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Abstract

Among various abiotic stresses, heat stress is one of the most damaging, threatening plant productivity and sur-
vival all over the world. Warmer temperatures due to climatic anomalies above optimum growing temperatures have 
detrimental impacts on crop yield potential as well as plant distribution patterns. Heat stress affects overall plant 
metabolism in terms of physiology, biochemistry, and gene expression. Membrane damage, protein degradation, en-
zyme inactivation, and the accumulation of reactive oxygen species are some of the harmful effects of heat stress 
that cause injury to various cellular compartments. Although plants are equipped with various defense strategies to 
counteract these adversities, their defensive means are not sufficient to defend against the ever-rising temperatures. 
Hence, substantial yield losses have been observed in all crop species under heat stress. Here, we describe the in-
volvement of various plant growth-regulators (PGRs) (hormones, polyamines, osmoprotectants, antioxidants, and 
other signaling molecules) in thermotolerance, through diverse cellular mechanisms that protect cells under heat 
stress. Several studies involving the exogenous application of PGRs to heat-stressed plants have demonstrated their 
role in imparting tolerance, suggesting the strong potential of these molecules in improving the performance of food 
crops grown under high temperature.

Keywords:  Antioxidants, crosstalk, GABA, high temperature, hormones, osmolytes.

Introduction

Rising temperatures, as a result of changing climate, are a 
major concern to scientists and agriculturists worldwide 
(Hasanuzzaman et  al., 2013). The Inter-Governmental 
Panel on Climate Change (IPCC, 2014) reported that the 
world’s temperature increased by 0.74  °C from 1906 to 

2005 because of unabated emanation of greenhouse gases 
by anthropogenic exercises (IPCC, 2014). This trend is ex-
pected to persist, which will lead to catastrophic losses in 
crop productivity (Bita and Gerats, 2013; Sharma et  al., 
2016). Estimated yield losses in India by 2100 range from 
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10% to 40% (Aggarwal, 2008). Moreover, abnormal spikes 
in day/night temperatures in several parts of the world are 
becoming more frequent, causing serious damage to several 
crops (Bita and Gerats, 2013).

‘Heat stress is often defined as where temperatures are hot 
enough for sufficient time that they cause irreversible damage 
to plant function or development’ (Hall, 1992). ‘Increase 
in air temperature, even by one degree above a threshold 
level, is considered heat stress in plants’ (Teixeira et al., 2013) 
Heat stress directly affects plant physiology, biochemistry, 
and overall gene expression, involving alterations in mem-
brane structure and function, tissue water content, and the 
composition of primary and secondary metabolites, proteins, 
and lipids. These resulting physiological, molecular, and bio-
chemical changes impair normal plant growth and develop-
ment (Wang et al., 2018). There are several target sites of heat 
stress: the oxygen-evolving complex (OEC) and associated 
cofactors in PSII, carbon assimilation by Rubisco, and ATP-
producing machinery. Heat stress disrupts electron transport, 
which enhances the production of reactive oxygen species 
(ROS) in chloroplasts and mitochondria that can seriously 
harm DNA and cause lipid peroxidation of the cell mem-
brane leading to cell death (Hameed et al., 2012; Asthir, 2015). 
Consequently, one of the plant defenses against heat stress is 
firmly related to the increased capacity for ROS scavenging 
and detoxification (Awasthi et  al., 2015). Thermotolerance 
might be attributed to better thermostability of the plasma 
membrane and lower levels of ROS generation (Chakraborty 
and Pradhan, 2011). To overcome heat stress, plants have 
various defensive components including the maintenance of 
membrane integrity, disposal of ROS through antioxidant 
production, accumulation of osmolytes, and up-regulation of 
heat shock protein (HSP) biosynthesis (Asthir, 2015; Awasthi 
et al., 2015; Sehgal et al., 2017). The response of field crops 
to heat stress varies depending on the timing and duration of 
exposure; the reproductive stage is the most sensitive growth 
stage (Prasad et al., 2017). Studies have shown that develop-
ment of male reproductive organs (i.e. male gametophytes) 
is the main factor deciding seed set during heat stress (X. Li 
et al., 2015; Sage et al., 2015; González-Schain et al., 2016). 
The ideal and threshold temperatures for fulfilling repro-
ductive success are crop dependent, beyond which the bio-
chemical and physiological processes deciding seed set are 
affected, resulting in huge yield losses (Prasad et  al., 2015; 
Sage et  al., 2015; W.  Shi et  al., 2015). Knowledge of heat 
sensitivity across plant developmental stages to calculate the 
portion of damage during the sensitive stages will help in the 
development of accurate genetic and molecular arbitrations 
to minimize the drastic effects of heat stress (Djanaguiraman 
et al., 2014; Prasad et al., 2017).

In response to heat stress, several plant growth-regulating 
molecules (plant growth regulators; PGRs) participate dir-
ectly or indirectly to impart thermotolerance. These include 
phytohormones such as abscisic acid (ABA), auxin (indole-3-
acetic acid; IAA), cytokinin (CK), ethylene, gibberellins (GA), 
brassinosteroids (BRs), jasmonic acid (JA), salicylic acid (SA), 
nitric oxide (NO) (Wani et al., 2016), polyamines (PAs) (Asthir 
et al., 2018), osmolytes (Alamri et al., 2018), and antioxidants 
(Zhang et al., 2018) (Table 1).

Damaging effects of heat stress on plants

Heat stress causes leaf scorching, leaf necrosis, leaf senescence, 
leaf abscission, reduced root and shoot growth, flower drop, and 
poor seed set (Zinn et al., 2010). Under heat stress, cell mem-
brane composition is altered by denaturation of plasma mem-
brane proteins, which causes electrolyte leakage (Savchenko 
et  al., 2002). Photosynthesis is also very sensitive to high-
temperature stress; high temperature modifies the photochem-
ical reaction in thylakoid lamellae in chloroplasts and alters the 
OEC, resulting in modification of the electron acceptor site of 
PSII and a direct effect on photophosphorylation (L.J. Wang 
et  al., 2010). Severe heat stress inactivates enzymes and pro-
duces ROS, causing serious cellular injuries (Liu and Huang, 
2000). Reproductive processes are highly sensitive to high tem-
perature. Heat stress disrupts pollen formation, pollen viability, 
pollen germination, pollen tube formation, egg formation in 
the ovule, the normal position of the style and stigma, pollen 
receptivity by stigma, fertilization, endosperm formation, and 
embryo growth, resulting in impaired reproductive growth 
(Foolad, 2005). In response to heat stress, plant cells increase the 
production of some ROS-scavenging enzymes and activate sev-
eral diverse antioxidants as a defense mechanism (Wahid et al., 
2007; Awasthi et  al., 2015). At the same time, plants produce 
endogenous compatible osmolytes such as Pro, glycine betaine 
(GB), and trehalose, which serve many functions including 
maintaining water relations, scavenging ROS, and protecting 
photosynthesis (Alamri et  al., 2018; Dawood and El-Awadi, 
2018). Plants also produces phytohormones such as ABA, SA, 
JA, auxins, and CKs, which act as signaling molecules to induce 
the activation of many defense-related mechanisms, and other 
molecules to increase the level of thermotolerance. Exogenous 
treatment of heat-stressed plants with these substances has im-
parted heat tolerance in various food crops (Wahid et al., 2007; 
Ahammed et al., 2016). Increases in temperature also alter the 
stability, biosynthesis, concentration, and homeostasis of various 
growth-regulating molecules in different plant parts (Maestri 
et  al., 2002; Ahammed et  al., 2016), which result in cellular 
damage at various levels, but, at appropriate concentrations, they 
offer protection from heat stress.

Plants exposed to short-term temperature changes trigger 
various acclimation responses, while continuous alteration may 
trigger adaptation responses (Bahuguna and Jagadish, 2015). 
While several PGRs, including phytohormones, are activated 
in response to heat stress in various plant tissues to partici-
pate in diverse signaling mechanisms, their roles in the heat 
stress response are not fully understood; in particular, how they 
interact and participate in crosstalk to sense, defend, and im-
part thermotolerance. Here, we describe the role of various 
growth-regulating molecules in heat-stressed plants, along 
with the crosstalk among them, in synergistic and antagonistic 
mechanisms that confer cellular thermotolerance. Initially, we 
describe how heat stress is sensed by plants, resulting in the ex-
pression of different defensive molecules.

Thermosensors in plants

Temperature changes are sensed by all plant cells subjected to 
heat stress at the same time. At the cellular level, heat stress 
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Table 1.  Various molecules involved in thermoprotection along with their functions

Molecule Function

Auxin • Involved in cell growth and cell expansion, mainly produced in actively growing parts of the plant.
• Hypocotyl elongation in Arabidopsis thaliana seedling under heat stress (29 °C) (Gray et al., 1998).
•  Exogenous application promoted anther cell proliferation and reversed male sterility to improve male reproductive growth in barley when 

exposed to heat stress (33 °C; Sakata et al., 2010).
•  Mitigated the harmful effect of high temperature stress (35 °C for 6 h d–1 for 4 d) in pea during flowering stage and enhanced yield 

(Abeysingha, 2015).
Gibbrellins • Play major roles in plant growth by cell elongation (Hedden and Thomas, 2012).

• GA by interacting with auxin and PIF4 helps in hypocotyl elongation in Arabidopsis under high temperature (29 °C; Stavang et al., 2009).
• Promote flowering under heat stress (27 °C) by GA-mediated DELLA protein degradation in Arabidopsis (Kumar et al., 2012).

•  Exogenous treatment with 50 µM GA helps to promote seed germination and seedling growth of Arabidopsis under heat stress (3 h at 
50 °C) (Alonso-Ramírez et al., 2009).

•  In Arabidopsis mutants for GA biosynthesis, its exogenous application restores deformities in reproductive function (Plackett et al., 
2012).

Cytokinins • Major role in the regulation of cell division, nucleic acid metabolism under stress conditions (Ha et al., 2012).
• Maintenance of meristematic nature and nutrient mobilization in plant cells (Gupta and Rashotte, 2012).
•  Enhance the rate of grain filling in rice by accelerating the rate of cell division in endosperm at early grain-filling stage and control the 

grain sink size (Zhang et al., 2010)
• Improve the rate of stomatal conductance to facilitate transpiration under heat stress condition (Macková et al., 2013).
•  Help in various heat-responsive processes such as production of glycine-rich proteins and HSPs. CK treatment delayed leaf senescence 

under heat stress (35 °C) in creeping bentgrass (Xu and Huang, 2009).
•  Exogenous treatment with (0.01 g l−1) CK improved grain yield by enhancing stay-green characteristics under heat stress (37 °C and 

33 °C) in wheat cultivars (Yang et al., 2016).
Abscisic acid •  Plays important role in seed germination, lateral root growth, seed development, seed dormancy, and transition from vegetative to repro-

ductive phase (Sah et al., 2016).
•  Induced the expression of small heat shock factors (sHSFs), such as sHSP17.2, sHSP17.4, and sHSP26, under heat shock (42 °C at 

an interval 2 °C h–1) (Hu et al., 2010b)

•  Rice plants on treatment with ABA (1, 10 and 100 μmol l–1) maintained optimum starch level, soluble sugars, and non-structural carbo-
hydrates under heat stress (39–41 °C from 09.00 h to 15. 00 h and 30 °C at night for 7 d) (Islam et al., 2018).

•  Its exogenous application of 10−5 M ABA to barley seedlings enhanced thermostability of thylakoids in barley seedling when exposed to 
45 °C and 50 °C by reducing chlorophyll fluorescence (Ivanov et al., 1992).

•  Maintained higher activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione peroxidase 
(GPX) in maize seedlings on exposure to heat stress at 50 °C (Gong et al., 1998). 

γ-Aminobutyric  
acid

•  Role in signal transduction, maintenance of cytosolic pH, carbon and nitrogen metabolism and their transport, plant growth, and stress 
resistance in plants (Bown and Shelp, 1997; Bouché and Fromm, 2004).

•  Regulates the production of osmolytes such as glycine betaine and proline in rice seedlings under heat stress (42 °C/37 °C) (Nayyar 
et al., 2014). 

•  Exogenous application of 2 mM GABA in Piper nigrum enhanced the activities of antioxidant system under PEG-induced stress 
(Vijayakumari and Puthur, 2016).

Brassinosteroids •  Similar to steroid hormones in animals, regulate cell division, cell elongation, seed germination, plant growth, flowering, and senescence 
(Khripach et al., 2003; Bajguz and Hayat, 2009).

• Enhanced activity of Rubisco and increased CO2 assimilation in Cucumis sativus (Yu et al., 2004) under heat stress.

•  Exogenous application of 1 μM EBR helps in aggregation of HSPs which results in enhanced basic thermotoerance in canola and  
tomato seedlings under heat treatment of 45 °C of varying length (Dhaubhadel et al., 1999).

•  Improve the chlorophyll concentration, stomatal conductance, quantum efficiency, and expression of antioxidants in Cucumis melo on 
exposure to heat stress (42 °C/32 °C; Y.P. Zhang et al., 2014).

Salicylic acid •  Phenolic plant growth regulator involved in plant responses such as water transport and nutrient uptake, stomatal conductance, and 
gaseous exchange (Yusuf et al., 2013).

•  Plays a key role in signal transduction involved in thermotolerance by increased endogenous and free SA in mustard under heat stress 
(Dat et al., 1998a, b).

•  Wheat plants exposed to 40 °C for 6 h daily, increased SA level, stimulated proline synthesis to improve osmotic potential and water 
uptake (Khan et al., 2013).

•  Its endogenous level in heat-stressed mungbean plant enhanced antioxidant enzyme activities to impart thermotolerance (Saleh et al., 
2007).

•  Exogenous treatment increased plant dry matter, free proline accumulation, and soluble protein content under heat stress (42±2 °C) in 
cotton seedlings (Hameed and Ali, 2016).

Jasmonates •  Play important role in plant growth regulation, involved in seed germination, root growth, sex determination in maize, leaf orientation, 
tuber formation, and fruit formation Yoshida et al., 2009; Sharma and Laxmi, 2016).

•  Exogenous treatment with 50 μM JA to grape seedlings activated antioxidant enzymes to prevent harmful effects of heat stress (42 °C: 
Qin and Lin, 2006).

1 μM JA exogenous treatment improved wheat coleoptile tolerance to heat stress(43 °C) by enhancing antioxidant activity (Karpets et al., 2014).
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perception and signaling involve the same stress response system 
throughout the plant (Mittler et al., 2012; Hasanuzzaman et al., 
2013). Plants have developed an incredible capacity to detect 
the slightest fluctuations in temperature. Different pathways, 
regulatory systems, and cellular compartments are associated 
with inducing thermotolerance in plants (Bita and Gerats, 
2013; Asthir, 2015; Awasthi et al., 2015) (Fig. 1). Plants have a 
wide range of thermosensors for detecting absolute and steady 
changes in seasonal and diurnal temperatures. In plant cells, 
the macromolecules (membranes, nucleic acids, and protein 

complexes) can simultaneously perceive heat stimuli from their 
surroundings (Richter et al., 2010) and act as thermosensors, 
through reversible changes such as increasing fluidity of the 
plasma membrane, fractional melting of nucleic acids, and pro-
tein misfolding. These high-temperature-responsive sensors 
have the potential to sense stimuli precisely, followed by dif-
ferent heat stress responses, depending on the extent of al-
teration. In addition, they can differentially activate signaling 
pathways to up-regulate a large number of heat stress response 
genes and gene networks (Mittler et al., 2012).

Molecule Function

Nitric oxide • Acts as a key player of cell signaling for many physiological processes, including stress tolerance in plants.
•  Under heat stress, interacts with other signaling molecules such as MAPKs, cADP ribose, and phytohormones along with Ca2+ to pre-

vent harmful effects on plants (Khan et al., 2014; Asgher et al., 2017).
•  Increased endogenous NO production in dorsal epidermal cells and suspension cells of tobacco plant induce thermotolerance under 

heat stress (40 °C for 7 min)
•  Exogenous treatment of NO improved thermotolerance by increasing the antioxidants in wheat (0.05–0.5 mM; El-Beltagi et al., 2016), 

enhancing seed germination in lettuce (0.1–0.5 mM; Deng and Song, 2012).
• Prevents oxidative stress and ion leakage in rice on treatment with 0.001–0.02 mM NO (Song et al., 2013).

Melatonin • Acts as strong growth modulator and rooting agent in plants (Hernández-Ruiz and Arnao, 2008; N. Zhang et al., 2014)
•  Exogenous melatonin prevented heat-induced (38/33 °C; day/night) growth inhibition, extended the duration of leaf senescence, and 

improved tiller number, cell membrane integrity, and photosynthetic efficiency in ryegrass (Lolium perenne L.; J. Zhang et al., 2017).

•  Foliar-sprayed melatonin (100 μmol l–1) on maize (Zea mays L.) seedlings helped to enhance antioxidant enzyme activity and reduce the 
effect of oxidative stress (Ye et al., 2016).

•  Pre-treatment with melatonin (200 μM) reduced H2O2 content, increased proline content, and enhanced antioxidants in kiwifruit  
seedlings (Liang et al., 2018).

Polyamines • Ubiquitous nitrogenous compounds present in all living cells meant for various cellular responses (Sengupta et al., 2016).
•  Exist in various forms—diamine (putrescine; Put), triamine (spermidine; Spd), and tetramine (spermine; Spm)—are the three most  

abundant PAs in plants.
•  Under heat stress, an increase in conjugated and free PAs was reported in heat-tolerant cotton and rice plants along with enhanced PA 

biosynthetic enzymes during high-temperature stress (Evans and Malmberg, 1989; Cona et al., 2006).
• Exogenous application imparts heat tolerance in mungbean (50 °C for 2 h; 1 mM Put; Basra et al., 1997).
•  Tomato supplied with 1 mM Spd increased expression of ethylene-related genes, PA biosynthesis genes under high temperature  

treatment (33/27 °C).
•  In rice seedlings, exogenous treatment of 1 mM Spd ameliorated heat stress (42 °C, 48 h) induced damage, and enhanced activity of 

antioxidant enzymes for heat stress tolerance (Mostofa et al., 2014).
Osmolytes 
Proline 
Glycine betaine

• Play an important role in cellular osmoregulation and stablilization of proteins in plant cells (Hayat et al., 2012).
•  Under heat stress, accumulation of free proline has been reported in many crops including tomato (Rivero et al., 2004), mulberry (Morus 

alba; Chaitanaya, 2001), cotton (De Ronde et al., 2000), cabbage and Chinese cabbage (Brassica oleracea; Hossain et al., 1995), and 
apple (Malus domestica Borkh.; Park et al., 2001).

•  Sugarcane, nodal buds soaked in 20 mM proline as well as glycine betaine improved the accumulation of soluble sugars, free proline, 
glycine betaine, K+ and Ca2+ contents under heat stress (42 °C) to overcome its harmful effects.

• Acts as a compatible solute and inhibits ROS accumulation under heat stress (Chen and Murata, 2002).
•  Endogenous biosynthesis or exogenous application of glycine betaine has stabilizing effect on photosynthetic membranes under heat 

stress in plants (Allakhverdiev et al., 1996).
•  Exogenous treatment with 20 mM glycine betaine promoted seed germination and yield due to improved shoot water content in barley 

seedlings (Wahid and Shabbir, 2005).
•  Tomato seeds supplemented with 0.1, 1, or 5 mM glycine betaine improved seed germination and seedling growth under high  

temperature (34 °C) (Li et al., 2011).
Antioxidants 
Ascorbic acid 
Glutathione 

• Ascorbic acid is an important antioxidant molecule; plays an important role in scavenging ROS (Smirnoff, 2000).
• Also act as a major signaling molecule for oxidative stress in plant cells (Akram et al., 2017)

•  Exogenous application with (50 μM) ascorbic acid imparted heat stress tolerance in mungbean under heat stress 40/30 °C and 
45/35 °C; day/night temperatures; Kumar et al., 2011)

•  GSH is a non-enzymatic, low molecular weight antioxidant molecule which participates in ROS detoxification in stressed conditions by 
interacting with plant hormones and signaling molecules (Hasanuzzaman et al., 2017).

•  Pre-treatment of mungbean seedlings with 0.1 mM GSH improved physiological performance as well as antioxidant defense systems 
during heat shock (42 °C; Nahar et al., 2015).

Table 1.  Continued
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The heat stress response involves various cellular com-
partments and regulatory pathways, and is triggered by four 
thermosensors (Fig. 1): (i) cyclic nucleotide-gated calcium 
channels (CNGCs) that lead to inward calcium flux (Saidi 
et al., 2009); (ii) a histone sensor in the nucleus (Kumar and 
Wigge, 2010); (iii) unfolded protein sensors in the endo-
plasmic reticulum (ER-UPRs) (Che et al., 2010; Deng et al., 
2011); and (iv) unfolded protein sensors in the cytosol (Cyt-
UPRs) (Sugio et al., 2009). Heat sensors (CNGCs, ER-UPRs, 
and Cyt-UPRs) are activated in response to high temper-
atures, triggering various signaling pathways through nu-
merous kinases as well as transcriptional regulators of the heat 

stress response, such as heat shock factors (HSFs), MBF1C 
(multiprotein bridging factor), and RBOHD (respiratory 
burst oxidase homologs) (Rasul et al., 2017). Many secondary 
messengers such as NO, hydrogen peroxide (H2O2), and Ca2+ 
ions are significantly important in heat stress signaling path-
ways (Pandey et al., 2015; Rasul et al., 2017). The heat signal 
is amplified by numerous pathways that merge into the final 
activation of heat stress-responsive genes, elevation of HSPs, 
and the onset of cellular thermotolerance (Mittler et  al., 
2011). The activation of different pathways may be tissue spe-
cific and vary between vegetative and reproductive tissues 
(Mittler et al., 2012).

Fig. 1. Heat stress sensing and signaling in plants. The plasma membrane and endoplasmic reticulum both participate actively in the plant heat stress 
response. High-temperature stress alters membrane composition as well as function. The membrane-localized RBOHD is regulated by cAMP activated 
by the calcium-permeable channel CNGC6 that mediates calcium influx. Other membrane components such as PIPK, PLD, and PLC sense changes in 
the state of membranes and activate the lipid signaling molecules PIP2, PA, and IP3, respectively. These molecules are further phosphorylated to IP6 and 
IP3 and mediate the release of calcium from the ER. RBOHD initiates a rapid increase in hydrogen peroxide (H2O2) and induces the ROS/redox signaling 
pathway along with MAPK HSFs and MBF1c–HSFA3–DREB2A during the heat stress response. MAPK HSFs also regulate the expression of CAT, 
hence maintaining the ROS level. Accumulated calcium further binds to CaM3 and activates CBK3/PP7 as well as TFs of the heat stress response, such 
as HSFs and WRKY39. The heat sensors associated with the ER-UPR consist of bZIP28 (spliced in the Golgi) and IRE1 (splicing bZIP60 mRNA). The 
FAD2 and FAD3 in the ER are crucial components in regulating membrane fluidity during the heat stress response. Several TFs may enter the nucleus 
to activate genes related to defense to impart thermotolerance in plants. Abbreviations: RBOHD, respiratory burst oxidase homolog D; CNGC6, cyclic 
nucleotide-gated ion channel; PIPK, phosphatidylinositol-4-phosphate 5-kinase; PLD, PM-localized phospholipase D; PLC, PM-localized phospholipase 
C; PIP2, phosphatidylinositol-4,5-biphosphate; IP3, inositol 1,4,5-triphosphate; ER, endoplasmic reticulum; ROS, reactive oxygen species; MAPK, 
mitogen-activated protein kinases; HSF, heat shock factor; MBF1c, multiprotein bridging factor; DREB2A, dehydration response element-binding 
factor 2A; CAT, catalase; CaM3, calmodulins; CBK3, calmodulin-binding protein kinase 3; PP7, phosphatase; WRKY, amino acid sequence; ER-UPR, 
endoplasmic reticulum unfolded protein response; bZIP28, basic leucine zipper; IRE1, inositol-requiring enzyme; FAD2, fatty acid desaturase 2; 
FAD3,(fatty acid desaturase 3; HSR, heat shock response, TF, transcription factor.
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The cell membrane is considered an important sensor for high 
temperature as it senses temperature variations and transduces 
them into the nucleus where the transcriptome is rehabilitated 
(Conde et al., 2011; Fig. 1). Membrane composition plays an im-
portant role in controlling the calcium-dependent heat-sensing 
signaling pathway (Saidi et al., 2009). Heat stress activates Ca2+ 
channels in the membrane, causing the influx of Ca2+ into plant 
cells (Hofmann, 2009). Membrane alteration due to heat stress 
stimulates many heat-responsive regulatory mechanisms (Rasul 
et al., 2017). Inside the cell, Ca2+ communicates and negotiates 
multiple signaling cascades by activating CaM3 (calmodulins) 
and CDPKs (calcium-dependent protein kinases) (Sajid et al., 
2018). CDPKs are further initiated by MBF1C that acts as its 
co-activator to stimulate the expression of antioxidant enzymes 
under heat stress (Qu et al., 2013). In turn, CDPK stimulates 
RBOHD and MAPK (mitogen-activated protein kinase) cas-
cades (Suzuki et al., 2011) (Fig. 1). These MAPKs (MAPK3 and 
MAPK6) play a crucial role in the heat stress response by regu-
lating the expressions of HsfA2 (heat-stress transcription factor 
A2) and HSPs (Wang and Huang, 2017). All these activated 
genes act downstream of the Ca2+ signaling cascades; hence, 
Ca2+ acts as a key node in the expression of HSFs and HSPs 
under heat stress (Sajid et  al., 2018). Inside the nucleus, Ca2+ 
or MAPK-activated HsfA2c stimulates the expression of HSP 
genes such as Hsp18, Hsp70, and Hsp90 (Wang and Huang, 
2017). Calmodulin activation by Ca2+ also induces the expres-
sion of some HSPs through signal transduction mechanisms 
(Wang and Huang, 2017; Fig. 1).

In the cytosol, HsfA2 is a key regulator in the response to 
heat stress, as reported in Arabidopsis thaliana (Wang and Huang, 
2017). It serves as a regulatory amplifier of a subset of genes 
for the heat stress response. HsfA2 is regulated by alternative 
splicing to form splice variant HsfA2-III, which further en-
codes the HsfA2 isoform (S-HsfA2) that binds to a heat shock 
element, resulting in the transcription of HSP genes and other 
heat-inducible genes (Liu et  al., 2013) (Fig. 1). Heat stress-
responsive machinery in plants includes HSPs, transcription 
factors (TFs), and important enzymes (Qu et  al., 2013). On 
exposure to very high temperature, overexpression of HSFs 
causes downstream activation of heat stress-responsive genes 
(Saidi et al., 2011). Elevated levels of HSPs are produced in re-
sponse to heat stress and are the key players in the heat shock 
response (Lindquist, 1986). HSPs are molecular chaperones in-
volved in protecting misfolded proteins from irreversible ag-
gregation. Functionally, there are seven classes of HSPs, and the 
predominant form is molecular chaperonins. The five major 
types of molecular chaperonins are Hsp60s, Hsp70s, Hsp90s, 
Hsp100s, and small heat shock proteins (sHsps) (Richter et al., 
2010).

The ER plays an important role in protein synthesis, folding, 
processing, and exportation. In addition, the ER has a role in 
lipid metabolism. The ER secretory pathway is responsible for 
the passage of more than a third of total protein via the ER 
lumen (Fragkostefanakis et  al., 2016; Niu and Xiang, 2018). 
ER homeostasis is highly sensitive to abiotic stress, leading to 
the production of misfolded and denatured proteins, which is 
known as ER stress (Walter and Ron, 2011; Niu and Xiang, 
2018). The basic mechanism behind ER stress tolerance is 

known as the unfolded protein response (UPR), which in-
volves the identification of unfolded or misfolded proteins and 
the activation of some TFs, foldases, and chaperones. Plants have 
two primary heat stress signaling pathways that are reported to 
sense ER stress. One pathway is initiated by membrane-linked 
TFs (the basic leucine zipper TFs, i.e. bZIP17 and bZIP28), and 
the other includes the RNA splicing factor (inositol-requiring 
enzyme IRE1) (Liu and Howell, 2016) (Fig. 1). Heat-induced 
ER stress is specifically sensed by bZIP28 and translocated into 
Golgi bodies where its TF domain can be cleaved by proteo-
lytic processing on the cytosolic side. The portion containing 
TFs subsequently enters the nucleus to initiate the expres-
sion of stress-related genes. In the case of the RNA splicing 
factor-mediated heat stress response, IRE1 is activated by its 
interaction with unfolded proteins to locate and recognize 
the mRNA of bZIP60 to be spliced. After splicing, its prod-
ucts penetrate the nucleus to trigger the expression of UPR 
genes (Deng et al., 2011; Liu and Howell, 2016; Niu and Xiang, 
2018). These sensing mechanisms eventually lead to the acti-
vation and expression of genes related to several molecules in-
volved in defense, including phytohormones, antioxidants, heat 
stress proteins, osmolytes, and amino acids (Wahid et al., 2007).

Roles of plant growth-regulating molecules 
in thermotolerance

Thermotolerance in plants is an inherent developmental 
system that is a vital component of the survival mechanism 
(Bahuguna and Jagadish, 2015). Thermotolerance consists of 
basal and acquired thermotolerance. The basal thermotolerance 
is an inherent ability for the plants to survive on exposure to 
temperatures above the optimal for growth, while acquired 
thermotolerance refers to the ability to cope with lethal 
high temperatures after acclimatization to mild temperatures 
(Clarke et al., 2004). Basal thermotolerance is reported to in-
volve SA, JA, and ethylene signaling pathways, and scavenging 
systems for ROS (Miller et al., 2008; Clarke et al., 2009). On 
the other hand, the acquired thermotolerance involves HSFs 
and HSPs; the former are primary regulators for the expres-
sion of HSP genes. Diverse types of signaling molecules such 
as SA, ethylene, ABA, H2O2, calcium, and phosopholipids are 
found to participate in acquired thermotolerance (Liu et  al., 
2015a). The expression of HSFs and HSPs is regulated by these 
molecules, which assist in preventing oxidative damage to the 
heat-stressed cells (Song et al., 2012).

Responses to heat stress are mainly related to altered pro-
duction and translocation of various PGRs, including 
phytohormones that ultimately affect the production potential 
of the plants. An array of studies has provided strong evidence 
on the involvement of these molecules in response to heat 
stress (Peleg and Blumwald, 2011; Ahammed et al., 2015; Xia 
et al., 2015). A diverse group of PGRs play an important role in 
stress defense responses, and their signaling pathways are com-
plexly interconnected to promote an efficient stress response 
(Fig. 2). It is important to understand the complex network of 
interactions among various PGRs to improve our knowledge 
of plant resistance mechanisms (Xia et al., 2015). Most of the 
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PGRs reported to protect plants from heat-induced injuries act 
either individually or together to coordinate defense responses 
to heat stress (Xia et al., 2015; Fig. 2). Generally, they respond 
quickly by altering gene expression during the stress period by 
either preventing or enhancing the degeneration of transcrip-
tional activators via the ubiquitin–proteasome system (Santner 
et al., 2009). Hence, the negative effects of extreme temperat-
ures can be mitigated by developing novel heat-tolerant lines 
with improved thermotolerance through the implication of 
PGRs at the genetic level (Zhou et al., 2014). Altering PGR 
levels through exogenous application or breeding techniques, 
at appropriate concentrations without harmful effects, may as-
sist in the management of heat stress responses and to sustain 
crop production in the era of climate change (Ahammed et al., 
2015). Considering these aspects, the expression of genes re-
lated to PGRs in a stage- and tissue-specific manner is essen-
tial for initiating heat tolerance, and this targeted modulation 
of the desired hormone pool offers better efficacy for regu-
lating heat stress responses in plants (Macková et  al., 2013). 
All major PGRs—auxins, GAs, CKs, ABA, ethylene, SA, JA 
and BRs—play a crucial role in high-temperature tolerance 
in plants (Zhou et al., 2014; Xia et al., 2015; Ahammed et al., 
2016; Fig. 2). While considerable progress has been made in 

deciphering the molecular mechanisms related to heat percep-
tion, the signaling mechanisms related to various PGRs under 
heat stress remain unclear and require further investigation 
(Ahammed et al., 2016). The role of various phytohormones 
in regulating reproductive growth and seed filling has been re-
cently described (Ozga et al., 2017), and thus will not be part of 
this review. Our focus here is on the role of various molecules, 
especially phytohormones, involved in the heat response, and 
their potential involvement in thermoprotection, mainly in 
vegetative components, though studies on their involvement 
in reproductive components have also been cited. It is per-
tinent to mention here that the endogenous concentrations of 
phytohormones may vary in a stage-specific manner, and so 
do their effects. Moreover, the effects of exogenous application 
of various molecules having a role in thermoprotection may 
also differ, depending upon their concentration, as well as the 
growth stage of the plants.

Auxins

The role of auxins in the heat stress response has recently at-
tracted attention, and there is some strong experimental evi-
dence regarding their role in thermoprotection. Exposure 

Fig. 2. Proposed mechanism of phytohormones, osmoprotectants, and antioxidants in thermotolerance in plants. Heat stress increases membrane 
fluidity and leads to the generation of reactive oxygen species (ROS) in plants. Phytohormones, especially auxins (as IAA), gibberellins (GA), cytokinins 
(CTKs), abscisic acid (ABA), ethylene (ET), salicylic acid (SA), jasmonic acid (JA), and brassinosteroids (BRs) along with other signaling molecules induce 
the mitogen-activated protein kinase (MAPK)/CDPK (calcium-dependent protein kinase) cascade leading to the up-regulation of different transcription 
networks, which further result in the expression of specific heat-responsive genes and elevation of antioxidants providing heat stress resilience. High 
temperature also activates the plasma membrane calcium channels that cause calcium influx. Calcium ions after binding with calmodulins initiate MAPK/
CDPK cascades, up-regulating transcription networks to impart thermotolerance. Some osmoprotectants such as proline, glycine betaine, and trehalose 
also alleviate the harmful effects of heat stress by osmoregulation and ROS detoxification via enhanced expression of antioxidants.
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to mild heat stress rapidly increased auxin accumulation and 
stimulated the YUCCA (flavin-containing monooxygenase) 
gene in Arabidopsis (Sharma et  al., 2015). Auxins have been 
implicated in cell division and elongation; this function was 
also noticed in heat-stressed (29 °C) A. thaliana seedlings, com-
pared with those grown at 20 °C. A dramatic hypocotyl elong-
ation was noticed under heat stress, which was not observed 
in mutants defective for auxin response and transport. On the 
other hand, mutants deficient in GA and ABA biosynthesis or 
in ethylene response were unaffected. Moreover, an increase 
in the endogenous IAA level was observed in heat-stressed 
plants, suggesting that high temperature enhanced the auxin 
levels, resulting in increased elongation of hypocotyls (Gray 
et  al., 1998; Table 1). The transcripts of auxin biosynthetic 

genes YUCCA8 and YUCCA9 were up-regulated more in 
cotyledons than in hypocotyls, suggesting that cotyledons are 
the main auxin source under high-temperature stress, which 
is subsequently mobilized to hypocotyls. This observation has 
been validated using an inhibitor of polar transport of auxin 
[naphthaleneacetic acid (NAA)] to demonstrate that auxin 
transport from the cotyledons (main site of auxin synthesis) 
to the hypocotyls is inhibited (de Wit et al., 2014). Hypocotyl 
elongation under mild heat stress involves TFs such as helix–
loop–helix TFs and PHYTOHORMONE INTERACTING 
FACTOR 4 (PIF4) (Koini et al., 2009) (Fig. 3), which regu-
late auxin synthesis and probably maintain appropriate cellular 
levels. Moreover, pif4 mutants were unable to elongate when 
exposed to 28 °C as compared with control (20 °C) (Franklin 

Fig. 3. Possible mechanism of hormonal crosstalk under heat stress, resulting in thermotolerance. Heat stress leads to the excessive production of ROS 
in plants. ABA is generally associated with a wide range of stress signals that alter all growth and development processes during heat stress. Beside 
ABA, other phytohormones such as CK, GA, IAA, ET, JA, and BRs have a significant role in heat stress tolerance in plants. These phytohormones act 
either synergistically or antagonistically in heat stress signaling events in plants. ABA is the key regulator of stomatal functioning and induces stomatal 
closure to prevent water loss under heat stress, whereas CK stimulates stomatal opening that increases photosynthetic efficiency and improves carbon 
assimilation and sink activity due to better gaseous exchange. CK also delays leaf senescence and reduces lipid peroxidation by enhancing antioxidant 
activity to confer thermotolerance. ABA inhibits CK production by blocking one or two steps in IPT synthesis (a key enzyme of the CK biosynthetic 
pathway) and stimulates the expression of BR-responsive genes (BZR1/BES1) that help in ROS scavenging. ABA also enhances sugar metabolism and 
signaling, and stimulates carbohydrate transportation to spikelets, which is highly beneficial for plants to withstand heat stress. Both GA and ABA have 
antagonistic effects during high-temperature stress; ABA represses seed germination while GA stimulates germination and activates SA biosynthetic 
genes (ICS1/NPR1) to induce the expression of HSPs to prevent protein folding/denaturation, and hence provides heat resilience in plants. Similarly, auxin 
imparts thermotolerance by inducing hypocotyl elongation and photosynthetic remodeling via up-regulating some auxin-responsive genes (SAUR, PIF4/
ELF3). These genes are also activated by BR, ET, and JA. Likewise, ET and JA act together to provide thermal acclimation via up-regulating some heat 
shock factors (HSF3/HSF101/HSP70). Together, this creates an intricate web of hormonal interactions under heat stress to induce heat stress responses 
in plants. Abbreviations: ROS, reactive oxygen species; ABA, abscisic acid; CK, cytokinin; GA, gibberellic acid; IAA, indole acetic acid; ET, ethylene; JA, 
jasmonic acid; BR, brassinosteroid; SA, salicylic acid; IPT, isopentenyl transferase; BZR1, brassinozole resistant1; BES1, BRI1-EMS-SUPPRESSOR 
1; ICS1, isochorismate synthase 1; NPR1, non-expressor of pathogenesis resistance (PR) genes; SAUR, small auxin up RNAs; PIF4, phytochrome-
interacting factor 4; ELF3, early flowering 3; HSF, heat shock factor; HSP, heat shock protein.
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et al., 2011). PIF4 regulates the expression of a SMALL AUXIN 
UP RNA (SAUR) genes to induce hypocotyl elongation (Box 
et al., 2015).

Auxin also interacts with HSPs to regulate thermotolerance 
in heat-stressed plants, as observed in Arabidopsis (Wang et al., 
2016). Under heat stress, HSP90 acts as a major molecular chap-
erone and is involved in the heat stress-induced auxin-mediated 
hypocotyl growth response in Arabidopsis. The auxin receptor 
TIR1 (TRANSPORT INHIBITOR RESPONSE 1) interacts 
with HSP90; HSP90–SGT1 (SUPPRESSOR OF G2 ALLELE 
SKP1), a protein implicated in the auxin response chaperone 
system, regulates thermotolerance in plants (Han and Hwang, 
2018). HSP90 and SGT1 are thought to be an important link 
between high temperature and auxin signaling to regulate 
growth with respect to rising temperature (Wang et al., 2016). 
Auxins have been implicated in imparting thermotolerance to 
reproductive components (anthers) (Oshino et al., 2011). Under 
heat stress, endogenous levels of auxin declined significantly in 
developing anthers and panicles of Hordeum vulgare (barley) and 
Arabidopsis under heat stress due to the repression of auxin syn-
thesis genes (YUCCA2 and YUCCA6) (Oshino et al., 2011). 
Exogenous application of auxins (10−5 M IAA was applied just 
prior to the high-temperature treatment at the five-leaf stage) 
under heat stress promoted anther cell proliferation and reversed 
male sterility to enhance reproductive growth (Sakata et  al., 
2010; Oshino et al., 2011; Table 1). Treatment of field pea with 
4-Cl-IAA (1×10–6 M) or the auxin analog 4-methylindole-3-
acetic acid, before the onset of primary flowering, partly miti-
gated the adverse effects of moderate heat stress (35 °C for 6 h 
d–1 for 4 d) on seed yield in field pea (Abeysingha, 2015). Field-
grown tomato plants treated with different concentrations 
(15, 45, and 75 ppm) of 4- chlorophenoxyacetic acid (4-CPA) 
showed significant improvement in fruit set and yield (Baliyan 
et al., 2013).

Gibberellins

GAs function primarily to enhance growth in nearly all plant 
organs by stimulating cell elongation and, sometimes, cell div-
ision (Hedden and Thomas, 2012). Hence, reduction in growth 
under a stress environment is attained by decreasing the bio-
active GA level (Hedden and Thomas, 2012). The reduction in 
GA levels results in accumulation of DELLA proteins, which 
enhance the stress tolerance by inhibiting growth (Hedden and 
Thomas, 2012). A  few studies have verified the role of GAs 
in the heat stress response. For instance, stem elongation is a 
well-known adaptation to heat stress; suppression of GA bio-
synthesis inhibited hypocotyl elongation in Arabidopsis under 
heat stress (Stavang et  al., 2009) A  strong molecular inter-
action between auxins, GAs, PIF4, and hypocotyl elongation 
under heat stress has been shown (Stavang et  al., 2009; Fig. 
3). GA interacts with PIF4, which is a key signaling mol-
ecule under heat stress (Stavang et al., 2009; Yamashino et al., 
2013). High temperature increases the receptiveness of the 
PIF4-binding site at the FT (flowering locus T) promoter to 
release H2A.Z nucleosomes (Bahuguna and Jagadish, 2015). 
Heat stress increases the flowering rate, which depends on 
the functioning of florigen; under heat stress, PIF4 activates 

the FT promoter that controls floral transition. GA-mediated 
DELLA protein degradation stimulates the activity of PIF4, 
while it activates the FT promoter, which may be the mech-
anism through which GA promotes flowering under heat stress 
(Kumar et  al., 2012). Studies involving the exogenous appli-
cation of GA validated its role in the acquisition of heat tol-
erance. For example, in A. thaliana, 50 µM GA alleviated the 
inhibition of growth due to heat stress by improving germin-
ation and seedling growth (Alonso-Ramírez et al., 2009). The 
role of GA was further evidenced by overexpressing GASA4 
from Fagus sylvatica in Arabidopsis, which improved heat tol-
erance by altering the expression of SA and pathogenesis-
related genes [ISOCHORISMATE SYNTHASE1 (ICS1) 
and NON-EXPRESSOR OF PATHOGENESIS-RELATED 
GENES 1 (NPR1)]. This also increased SA accumulation in 
Arabidopsis under heat stress, suggesting that GA improves 
seed germination and seedling growth under high tempera-
ture by modulating SA biosynthesis and signaling pathways to 
induce thermotolerance (Alonso-Ramírez et  al., 2009; Table 
1). In barley and radish, application of 900 µM GA protected 
the seedlings of these plant species from heat stress (35 °C and 
38 °C, respectively). The plants treated with GA attained better 
germination and growth of seedlings (Cavusoglu and Kabar, 
2007). The heat-stressed (35 °C) seeds of kiwifruit (Actinidia 
deliciosa Chev. cv. Hayward) showed improved germination 
with GA3 (2000, 4000, and 6000 ppm concentrations) (Çelik 
et al., 2006). At the reproductive stage, maintenance of appro-
priate GA levels is critical since the mutants for GA biosyn-
thesis in Arabidopsis produced deformed stamens and anthers 
that prevented the production of normal mature pollen grains 
(Plackett et al., 2012; Regnault et al., 2014), but could be re-
stored by exogenous application of GA, thus validating its role 
in reproductive function (Plackett et al., 2012). The role of GAs 
in regulating pollen development and function under heat 
stress needs to be explored further.

Cytokinins

CKs have a major role in the regulation of cell division, nu-
cleic acid metabolism, and the interaction between roots and 
shoots, especially under stress conditions (Banowetz et  al., 
1999; Ha et  al., 2012). In plant abiotic stress tolerance, CKs 
have a key role in the promotion of cell division, maintenance 
of the meristematic nature of cells, increasing redox potentials 
during abiotic stress, and the regulation of nutrient mobiliza-
tion (Werner et al., 2010; Gupta and Rashotte, 2012). Higher 
levels of zeatin (Z) and zeatin riboside (ZR) in rice grains 
enhanced the grain-filling rate during early and middle grain-
filling stages, when grown under a field environment (Yang 
et  al., 2000; Zhang et  al., 2010). CKs in rice grains acceler-
ated the rate of cell division in endosperm at early grain-filling 
stages and regulated the grain sink size, when grown in field 
conditions (Zhang et al., 2010).

Leaf cooling is vital under heat stress, which occurs by 
increasing the rate of transpiration and maintaining stomatal 
function under heat stress. CKs play a critical role in enhancing 
stomatal conductance to facilitate transpiration in response to 
heat stress. Genetically modified tobacco plants overexpressing 
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the CYTOKININ OXIDASE/DEHYDROGENASE 1 
(CKX1) gene of A.  thaliana had slower stomatal movement, 
which maintained an appropriate leaf temperature (Macková 
et al., 2013). In the same study, overexpression of the CKX1 
precursor gene in roots, using the WRKY6 promoter, im-
proved resistance to heat and drought stress in tobacco plants 
(Macková et al., 2013).

CKs also direct various heat-responsive processes such as 
the production of glycine-rich proteins and HSPs (Zwack 
and Rashotte, 2015). High accumulation of CK was cor-
related with heat tolerance in Passiflora edulis (Sobol et  al., 
2014). Induced expression of the cytokinin-synthesizing 
gene ISOPENTENYLTRANSFERASE (IPT) increased en-
dogenous cytokinin levels to impart thermotolerance in creeping 
bentgrass (Agrostis capillaries; Xu and Huang, 2009; Fig. 3). In 
creeping bentgrass, a CK treatment [0.01, 0.1, 1, and 10 μmol of 
ZR, injected into the 0–5 cm root zone on the day before heat 
stress (0 d) and 14 d after] delayed leaf senescence and enhanced 
resistance to high-temperature stress by activating the antioxi-
dants and decreasing lipid peroxidation (Liu and Huang, 2000). 
In other studies, CK has helped to maintain chlorophyll levels 
and hence photosynthetic ability in Triticum aestivum (wheat; 
Zavaleta-Mancera et  al., 2007), Zea mays (maize; He and Jin, 
1999), and H. vulgare (barley; Yaronskaya et al., 2006). Treatment 
of broccoli florets with 6-benzylaminopurine (6-BA; 200 mg 
l–1) decreased chlorophyllase levels and hindered chlorophyll 
degradation, while exogenous treatment of 6-BA on two field-
grown wheat cultivars (Wennong 6 and Jimai 20)  improved 
grain yield by enhancing stay-green characteristics under heat 
stress (Xu et al., 2012; Yang et al., 2016; Table 1).

CKs respond to environmental cues in plants and this is be-
lieved to be related to its role in maintaining the overall hor-
monal balance and interactions with other hormones such as 
ABA, ethylene, JA, and SA, which are directly involved in abi-
otic stress responses (Hare et al., 1997; Thu et al., 2017). The 
crosstalk among auxins, CKs, GAs, ABA, and ethylene is im-
portant for the whole plant as well as organ-specific adapta-
tion and growth responses under abiotic stress. When plants are 
confronted with growth-limiting conditions, stress hormones 
such as ethylene and ABA retard growth by changing auxin, 
GA, and CK activity in a tissue-dependent manner (Wolters 
and Jürgens, 2009; Peleg and Blumwald, 2011). CKs also 
interact with other growth regulators such as SA and BRs to 
activate many physiological processes under heat stress (Peleg 
and Blumwald, 2011). Complex crosstalk and interactions 
have been observed between CKs and ABA under heat stress 
(Wang et  al., 2011; Ha et  al., 2012). It is assumed that CKs 
and ABA work antagonistically in various physiological and 
developmental events, as well as in response to different envir-
onmental stresses (Catala et al., 2007; Fig. 3). Interestingly, heat 
stress markedly reduced ZR content in wheat kernels, while 
IAA, GA, and ABA contents increased (Yang et al., 2016). In 
rice under heat stress, exogenous application of melatonin sig-
nificantly increased CK and melatonin levels but reduced ABA 
levels (J. Zhang et al., 2017). In the same study, the exogenous 
melatonin treatment up-regulated CK biosynthetic genes and 
their corresponding TFs, and down-regulated ABA-responsive 
genes (J. Zhang et al., 2017). These studies indicated the vital 

role of CKs in regulating chlorophyll concentration and grain 
growth under heat stress.

Abscisic acid

Among plant hormones, ABA is the essential regulator of en-
vironmental stress responses and coordinates with several other 
functions, enabling plants to combat various stresses (Wani and 
Kumar, 2015). ABA plays a critical role in developmental pro-
cesses such as seed germination, seedling growth, lateral root 
formation, seed development, seed dormancy, and the transi-
tion from vegetative to reproductive phase under stress (Sah 
et al., 2016) in a concentration-dependent manner. Generally, 
HSPs and antioxidant systems mediate ABA signaling to en-
hance thermotolerance in plants. However, sugar metabolism 
and signaling also play essential roles in thermal acclimation 
in the presence of ABA (Islam et  al., 2018; Fig. 3). In maize 
leaves under heat stress, ABA induced (100 µM) the expres-
sion of small heat shock factors (sHSFs), such as sHSP17.2, 
sHSP17.4, and sHSP26 (Hu et al., 2010b). The interaction of 
ABA with HSP70 mitigated the harmful effects of heat stress 
on enzymes and proteins via preventing their misfolding and 
proteolysis (Hu et  al., 2010a; C. Li et  al., 2015). Similarly, in 
rice spikelets at the pollen mother cell meiosis stage, ABA (1, 
10, and 100 μmol l−1) significantly increased the expression of 
HSP24.1 and HSP71.1 genes, especially HSP24.1 (Islam et al., 
2018), and prevented pollen abortion by mediating sucrose 
metabolism in the heat stress environment.

Stomatal regulation is also a common adaptive approach 
in the response to heat stress. High temperature rapidly in-
creases endogenous ABA content to improve water balance and 
strengthen thermal acclimation in plants by mediating stomatal 
closure and inducing antioxidant ability (Hu et al., 2010a; Hsieh 
et  al., 2013), as reported in cucumber and rice leaves (Gong 
et al., 1998; Tang et al., 2008). Stomatal closure can be regulated 
by controlling endogenous ABA levels; for example, tobacco 
plants increased stomatal conductance possibly due to enhanced 
catabolism of ABA (Macková et  al., 2013). A  transient rise in 
temperature beyond the optimum level initially enhanced tran-
spiration to reduce leaf temperature; however, increased tran-
spiration eventually results in water deficit that induces ABA 
synthesis for stomatal closure (Macková et  al., 2013). Hence, 
maintaining appropriate ABA levels is pivotal to regulate sto-
matal controls to attain leaf cooling under heat stress.

The effects of ABA differ according to the stage of the 
plants, depending upon its endogenous concentration. For 
example, heat stress inhibited seed germination in A. thaliana 
by increasing endogenous ABA levels (Toh et al., 2008), sug-
gesting the inhibitory role of this hormone in germinating 
seeds. Increased ABA levels in imbibed seeds is achieved by 
up-regulation of ABA biosynthetic genes such as ABA1/
ZEP, NCED2, NCED5, and NCED9, while lower levels of 
GA are maintained by suppression of GA 20-oxidase genes, 
GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes 
in Arabidopsis (Toh et al., 2008). Furthermore, ABA-deficient 
aba2-2 mutant seeds showed increased expression of GA syn-
thesis genes but suppressed expression of the GA negative 
regulator gene SPINDLY (SPY) upon exposure to heat stress, 
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indicating that ABA levels are important for controlling GA 
levels in seeds under high temperature (Toh et al., 2008), and 
thus affecting seed germination. Appropriate relative con-
centrations of ABA/GA appear to be more important, ra-
ther than their absolute concentrations, in seeds germinating 
under heat stress. In contrast, ABA induced heat resistance in 
pea leaves, as a result of acclimation at 38  °C, and affected 
the genes and enzymes related to lipid metabolism, including 
phosphatidylinositol-4,5-bisphosphate (PIP2)–phospholipase 
C (PLC) enzyme activity, which has a vital role in signaling 
(Liu et  al., 2006). Another study in cultured grape cells and 
leaves also showed the involvement of ABA in inducing heat 
tolerance (Abass and Rajashekar, 1993). Heat acclimation at 
38  °C and 36  °C, respectively, increased endogenous ABA 
levels, suggesting its putative role in thermotolerance (Abass 
and Rajashekar, 1993). Moreover, exogenous application of 
ABA (9.5 μM or 7.6 μM) to cultured cells significantly im-
proved thermotolerance in grapes (Abass and Rajashekar, 
1993). Similarly, application of 75 μM ABA in Bromus inermis 
cell suspensions induced the expression of ABA-responsive 
proteins to impart thermotolerance (Robertson et al., 1994). In 
another study, exogenous application of 10−5 M ABA to barley 
seedlings at 45 °C and 50 °C reduced heat-induced chloro-
phyll fluorescence and enhanced the thermostability of thyla-
koids (Ivanov et  al., 1992). In maize, various concentrations 
of ABA (0.2, 0.3, and 0.5 mM) maintained higher activities 
of antioxidant enzymes including catalase (CAT), superoxide 
dismutase (SOD), ascorbate peroxidase (APX), and glutathione 
peroxidase (GPX) under heat stress (Gong et al., 1998; Table 1). 
Kumar et al. (2012) showed that 2.5 μM ABA was sufficient to 
reduce oxidative damage in chickpea plants. In lucerne (alfalfa, 
Medicago sativa L.) genotypes contrasting in heat tolerance, a 
foliar application of ABA (0.1 mM) increased heat tolerance 
by reducing the damage to membranes, affecting stomatal 
conductance, and increased recovery in growth and leaf water 
potential (An et al., 2014). ABA treatment also increased the 
performance of reproductive function and grain development 
in a heat stress environment. For instance, in tomato, under 
heat stress, the endogenous ABA level increased in the tolerant 
cultivar, but not in the sensitive cultivar. Moreover, exogenous 
ABA treatment improved pollen germination in a heat stress 
environment (Shengli et al., 2005). Furthermore, ABA-treated 
rice plants maintained optimum levels of starch, soluble sugars, 
and non-structural carbohydrates under heat stress at the 
pollen mother cell meiosis stage (Islam et al., 2018). Recently, 
Rezaul et al. (2019) showed that ABA treatment (100 μmol l–1) 
of rice plants prior to heat stress (40 °C) reduced the impact 
of high temperature on pollen function, which was attributed 
to enhanced expression of HSPs and genes related to carbo-
hydrate metabolism, sucrose transporters, and antioxidants. 
In developing wheat grains, under a heat stress environment, 
ABA was found to control starch biosynthesis. Exogenously 
applied ABA improved starch accumulation under heat stress 
by increasing the activity of glutamate-pyruvate transaminase 
and glutamate-oxaloacetate transaminase: the ABA concen-
tration doubled in hormone-treated wheat plants, suggesting 
its role in thermoprotection (Asthir and Bhatia, 2014; Asthir, 
2015). In wheat, TaHsfC2a-B genes induced by ABA and heat 

were highly up-regulated during the grain-filling stage to 
confer heat tolerance (Hu et al., 2018). Since ABA plays a cru-
cial role in the thermal acclimation of plants, understanding 
the underlying mechanisms would be beneficial for breeding 
heat-resistant lines and developing new breeding techniques 
that compensate for heat damage (Islam et al., 2018).

Brassinosteroids

BRs are an important class of plant hormones—similar to 
steroid hormones of animals—that regulate developmental 
processes such as cell division, cell elongation, seed germin-
ation, vegetative growth, flowering, reproductive growth, and 
senescence (Khripach et  al., 2003; Sasse, 2003; Bajguz and 
Hayat, 2009; Bari and Jones, 2009). The basic mechanisms be-
hind these processes influenced by BRs are not clear. BRs are 
present in different plant parts including leaves, shoots, vascular 
cambium, roots, flower, pollen, fruits, and seeds (Bajguz and 
Hayat, 2009).

Studies have shown that BR-induced heat stress resistance 
is closely related to increased synthesis of HSPs (Dhaubhadel 
et al., 1999; Ogweno et al., 2008). At high temperature, plants 
gather highly ordered cytoplasmic complexes known as heat 
shock granules, which reportedly increase in BR-treated leaves 
relative to untreated leaves (Bajguz and Hayat, 2009). Moreover, 
increased BR levels can activate various antioxidants to min-
imize oxidative damage (Divi et al., 2016; Sahni et al., 2016). In 
greenhouse-grown Cucumis sativus, under heat stress, BRs sig-
nificantly enhanced the initial activity of Rubisco and increased 
the assimilation of CO2 (Yu et  al., 2004). BR-treated canola 
(Brassica napus) and tomato (Solanum lypersicum) seedlings in-
creased their basic thermotolerance, which was associated with 
the aggregation of HSPs such as Hsp100, Hsp90, Hsp70, and 
low molecular weight HSPs (Bajguz and Hayat, 2009; Fig. 3). 
As a result, the BR-treated plants had better photosynthetic ef-
ficiency, pollen germination, and low pollen bursting. Another 
beneficial effect of BR treatment was an increase in fruit yield 
due to increased fruit numbers, as reported in tomato grown 
under heat stress (Singh and Shono, 2005). In heat-stressed 
(43 °C) wheat plants, BR application improved the protein con-
centration and cell ultrastructure of leaves (Kulaeva et al., 1991). 
Exogenous treatment (through seed or leaves) with BR im-
proved thermotolerance in Brassica juncea, grown under a field 
environment (Sandeep et al., 2014; Table 1), and Cucumis melo 
(Y.P. Zhang et al., 2014) by improving chlorophyll concentra-
tion, chlorophyll fluorescence, stomatal conductance, quantum 
efficiency, and the expression of antioxidants. Similarly, in to-
mato, BR treatment (as foliar spray) decreased oxidative damage 
(Zhou et  al., 2014) and membrane damage, and enhanced 
photosynthetic activity (Khan et al., 2015). A recent study (Divi 
et al., 2016) in A. thaliana revealed that the transcription fac-
tors HSF21 and HSF4 are the putative BRASSINAZOLE-
RESISTANT1 (BZR1) targets imparting protection from 
heat stress. In addition, up-regulation of the genes WRKY33, 
ACID PHOSPHATASE5 (ACP5), BR-RESPONSIVE-
RECEPTOR-LIKE KINASE (BRRLK), and JACALIN-
RELATED LECTIN1-3 (JAC-LEC) in the BR treatment, 
under heat stress, might play a role in thermotolerance. Studies 
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are needed to assess the endogenous concentration of BR in 
normal and heat-stressed plants, and to probe their interaction 
with other hormones in conferring heat tolerance.

Salicylic acid

SA or o-hydroxybenzoic acid is a potential phenolic plant 
growth regulator involved in various responses such as water 
transport and nutrient uptake, chlorophyll and protein forma-
tion, stomatal conductance, and gaseous exchange (Fariduddin 
et al., 2003; Vlot et al., 2009; Yusuf et al., 2013). It also regulates 
some other processes including Pro metabolism, GB produc-
tion, and antioxidant defenses, improves plant water relations 
under stress condition, and protects plants against abiotic stress. 
Studies have shown that SA is directly or indirectly involved 
in high-temperature stress responses in plants (Nazar et  al., 
2015). It has been reported that SA is highly beneficial for 
plant growth under both normal and stressed environments, 
as it modulates osmolytes and other metabolites to participate 
in thermoprotection (Khan et al., 2015). SA plays a key role in 
the signal transduction process involved in thermotolerance, 
as evidenced by the increased endogenous free and bound 
SA in Brassica campestris (mustard) under a heat stress environ-
ment (Dat et al., 1998b). In wheat, increased SA levels further 
stimulated Pro synthesis to increase osmotic potential, enabling 
plants to take up more water under heat stress (Khan et  al., 
2013). A significant increase in endogenous SA levels in heat-
stressed mungbean plants increased antioxidant enzyme (CAT, 
POD, SOD, etc.) activities to impart thermotolerance (Saleh 
et  al., 2007). Moreover, studies involving exogenous applica-
tion of SA also validated its role in imparting heat tolerance 
in potato (Lopez-Delgado et al., 1998), chickpea (Chakraborty 
and Tongden, 2005), and Kentucky bluegrass (He et  al., 
2005). Various mechanisms through which SA can exert 
thermotolerance include increased activity in antioxidants 
such as SOD, CAT, POD, glutathione reductase (GR), and 
Rubisco as observed in wheat (Khan et al., 2013; Y. Wang et al., 
2014; Table 1) and grapevines (L.J. Wang et al., 2010). In cotton 
(Gossypium hirsutum), exogenous SA application increased 
plant dry matter, free Pro accumulation, and total soluble pro-
tein content under heat stress, relative to unstressed seedlings 
without SA treatment (Hameed and Ali, 2016). Similarly, SA 
application in rice induced phytohormones (auxins, GA3, BRs, 
ABA, CK, and JA), antioxidant enzymes (SOD, POD, CAT, 
and APX), soluble sugars, and Pro (C.X. Zhang et al., 2017; Fig. 
3). Foliar spray of SA diminished heat stress-induced oxidative 
harm in Arabidopsis plants (Larkindale and Knight, 2002; Pál 
et  al., 2013, 2014) and chickpea (Chakraborty and Tongden, 
2005). In grapes, SA sprayed exogenously on leaves induced 
long-term thermotolerance by improving the antioxidant 
system and Ca2+ homeostasis (Wang and Li, 2006). Chakraborty 
and Tongden (2005) induced thermotolerance in chickpea 
plants by applying a 0.1 mM foliar SA treatment, which in-
creased antioxidant activity. In grapevines (Vitis vinifera L.), 
exogenous application of SA reduced the heat stress-induced 
altered CO2 assimilation by maintaining a higher activity of 
Rubisco, which ensures PSII efficiency (L.J. Wang et al., 2010). 
There are other instances where exogenous SA has enhanced 

thermotolerance; some examples include Arabidopsis (Clarke 
et al., 2009), mungbean (Vigna radiata; 1 mM; Saleh et al., 2007), 
Indian mustard (10–5 M; Hayat et al., 2009), wheat (0.5 mM; 
Khan et al., 2013; Y. Wang et al., 2014), cotton (0.5–1.5 mM; 
Hameed and Ali, 2016), and rice (50 mM; C.X. Zhang et al., 
2017). The mechanisms for SA-enhanced thermotolerance 
include activation of protein kinase, inhibition of D1 pro-
tein degradation (Zhao et al., 2011), up-regulation of various 
antioxidants, improved photosynthetic activity, and changes in 
phytohormones such as ABA, GA3, IAA, ZR, and JA (C.X. 
Zhang et al., 2017; J. Zhang et al., 2017).

Jasmonates

JA plays an important role in plant growth regulation involving 
seed germination, root growth, sex determination in maize, 
seedling development, leaf orientation, stamen and trichome 
differentiation, anthocyanin accumulation, tuber formation, 
fruit maturation, cell cycle regulation, and senescence (Zhang 
and Turner, 2008; Yoshida et  al., 2009; Sharma and Laxmi, 
2016). JA helps in the activation of plant defense responses for 
both biotic and abiotic stresses, including high temperature, 
low temperature, salinity, and heavy metal stress (Tani et  al., 
2008; Yan et al., 2012; Samota et al., 2017). JA acts as a signaling 
molecule to induce thermotolerance in many plants (Turner 
et al., 2002; Clarke et al., 2009). The key role of JA in response 
to temperature stress has been explored in detail (Sharma and 
Laxmi, 2016). JA is mainly involved in signal transmission 
under heat stress but also regulates growth, aging, floral de-
velopment, and leaf abscission (Dar et  al., 2015). Further, JA 
induces the expression of HSPs, as well as other stress-related 
proteins or TFs under heat stress (Sharma and Laxmi, 2016). 
Several studies involving the exogenous application of JA have 
reported its mitigatory role in heat stress, for example in grapes 
(Wang and Li, 2006), Arabidopsis (Clarke et  al., 2009), and 
wheat (Karpets et al., 2014).

Treatment of grape seedlings with 50 μM JA activated anti-
oxidant enzymes to prevent the harmful effects of heat stress 
(42 °C: Wang and Li, 2006; Table 1). Exogenous application at 
low concentrations of methyl jasmonate (MeJA) maintained 
cellular stability in heat-stressed Arabidopsis plants, as dem-
onstrated by low electrolyte leakage tests and maintenance of 
cellular viability (Clarke et  al., 2009). However, no evidence 
showed that thermotolerance involved MeJA in the expres-
sion of HSPs. Evidence of the role of JA in thermotolerance 
was observed from Arabidopsis mutants (coi1-1, opr3, and 
jar1-1cpr5-1) (Clarke et  al., 2009). In Helianthus annuus, seed 
treatment with JA (10–2–10–4 M) imparted heat tolerance by 
reducing membrane damage (Górnik et  al., 2014). Similarly, 
in wheat, JA treatment improved coleoptile tolerance to heat 
stress by enhancing antioxidant activity (Karpets et al., 2014). 
The mechanism by which JA confers protection from heat 
stress involves the activation of diverse antioxidants (Wang and 
Li, 2006) and stabilization of membranes (Clarke et al., 2009). 
There is enough evidence that many WRKY genes are in-
volved in abiotic stresses, including heat stress. Various WRKY 
TFs impart heat stress tolerance, including OsWRKY11 (Wu 
et al., 2009), AtWRKY25 (Zhu et al., 2009), and AtWRKY39 
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(Li et al., 2010). The studies by Dang et al. (2013) revealed that 
CaWRKY40 is transcriptionally triggered by the exogenous 
application of JA, which in turn influences the expression of 
downstream thermotolerance-associated genes.

Nitric oxide

NO is an inorganic free radical in living organisms that is 
considered a plant hormone and key player in cell signaling 
for many physiological processes, including stress tolerance in 
plants (Khan et al., 2014; Oz et al., 2015; Table 1). NO plays 
an important role in controlling physiological processes such 
as seed germination, growth, development, photosynthesis, 
and senescence, and responds to specific abiotic stress (Arc 
et  al., 2013; Fatma et  al., 2016; Asgher et  al., 2017). NO acts 
as an antioxidant, depending on its concentration and loca-
tion in a plant cell or tissue (Lamattina et  al., 2003; Corpas 
et al., 2007; Neill et al., 2008). Many studies have shown the 
direct and indirect role of NO in plant stress tolerance path-
ways under drought and high-temperature stress (García-Mata 
and Lamattina, 2001; Benzarti et  al., 2008; Siddiqui et  al., 
2011). In response to heat stress, plants produce NO to induce 
thermotolerance, which has been reported in various plants 
(Corpas et al., 2011; Wendehenne, 2016). In tobacco, heat stress 
at 40 °C for 7 min significantly increased NO in dorsal epi-
dermal cells and suspension cells (Gould et al., 2003). In an-
other study, pea plants exposed to 38 °C for 4 h reduced the 
amount of NO in leaves but had no effect on the activity of its 
biosynthetic enzymes (Corpas et al., 2008). In M. sativa (alfalfa), 
a short heat stress increased NO production, which was nega-
tively correlated with ethylene production (Leshem, 2012). 
The role of NO during extreme temperature stress might be 
to decrease ROS levels (Neill et al., 2002, 2008). The relation-
ship between NO formation and stress resistance is not clear, 
and significant variation has been observed in NO-controlled 
heat stress tolerance. Under heat stress, NO also interacts with 
other signaling molecules such as MAPKs, cADP ribose, Ca2+ 
(Khan et  al., 2015; Asgher et  al., 2017), and phytohormones 
such as ABA (Neill et al., 2008; Song et al., 2008; Wendehenne, 
2016). These signaling molecules further induce the expres-
sion of certain protein kinases that initiate downstream gene 
expression (Parankusam et  al., 2017). This alteration in gene 
expression often stimulates a cascade of events such as antioxi-
dant synthesis, overaccumulation of osmoprotectants, changes 
in plant metabolism, and up-regulation of HSPs to enhance 
survival under heat stress (Asgher et al., 2017). NO improved 
thermotolerance by increasing the antioxidants in wheat 
(0.05–0.5 mM; El-Beltagi et al., 2016; Table 1), enhancing seed 
germination in lettuce (0.1–0.5 mM; Deng and Song, 2012), 
up-regulating transcription of PSII core proteins in tall fescue 
(0.1  mM; Chen et  al., 2013), and reducing ion leakage and 
preventing oxidative stress in rice (0.001–0.02 mM; Song et al., 
2013; Singh et al., 2016).

γ-Aminobutyric acid

γ-Aminobutyric acid (GABA) is a non-protein amino acid; its 
concentration is up-regulated to activate genes related to stress 

tolerance including heat stress (Lancien and Roberts, 2006; 
Renault et al., 2010). GABA plays a role in signal transduction, 
maintenance of cytosolic pH, carbon metabolism, nitrogen me-
tabolism and its transport, plant growth, development, and plant 
resistance to abiotic stresses (Bown and Shelp, 1997; Bouché 
and Fromm, 2004; Roberts, 2007; Barbosa et al., 2010; Li et al., 
2016). GABA can amplify stress stimuli, activate ethylene syn-
thesis, and perform a variety of roles in stress-resistant mechan-
isms in plants (Kinnersley and Turano, 2000). External treatment 
with GABA initiates a stimulatory action in many plants (Baum 
et al., 1996; Kinnersley and Turano, 2000; Roberts, 2007). In sun-
flower, exogenous treatment with GABA (for 12 h) increased 
expression of the ACC synthase enzyme of ethylene production, 
which increased ethylene content by 14-fold (Kathiresan et al., 
1997). GABA treatment can positively influence the growth, 
physiology, and various biochemical responses of plants to en-
vironmental cues such as drought and heat stress. For instance, 
in rice seedlings under heat stress, GABA regulated the pro-
duction of osmolytes such as GB and Pro, increased leaf water 
content by accelerating the synthesis of osmolytes, and reduced 
damage caused by oxidative stress (Nayyar et al., 2014; Table 1). 
In GABA-treated plants, osmotic adjustment is comparatively 
faster, and therefore, relative leaf water content (RLWC) is better 
maintained (Li et  al., 2016). In Piper nigrum, GABA enhanced 
the activity of various antioxidants, and their concentrations in-
creased more quickly under polyethylene glycol (PEG)-induced 
stress than the untreated plants (Vijayakumari and Puthur, 2016). 
The role of GABA in heat tolerance has not been fully ex-
plored; in particular, its role in signaling and interaction with 
phytohormones is yet to be ascertained.

Melatonin

Melatonin is a derivative of indoleamine, present throughout 
the plant kingdom. It is an amphiphilic substance, so it can 
cross cell membranes effortlessly and enter subcellular com-
partments (Shida et al., 1994). Various studies have shown that 
melatonin is a strong growth modulator and rooting agent 
(Hernández-Ruiz and Arnao, 2008; Chen et al., 2009; Sarrou 
et  al., 2014; N. Zhang et  al., 2014). Besides its roles in plant 
growth modulation, melatonin plays an important role in plant 
stress tolerance. Recent reports showed the protective role of 
melatonin in high-temperature-mediated senescence of rye-
grass (Lolium perenne L.) leaves (J. Zhang et al., 2017). Melatonin 
prevented heat-induced growth inhibition, extended the dur-
ation of leaf senescence, repressed senescence-associated genes 
(LpSAG12 and Lph36), and improved tiller number, cell mem-
brane integrity, chlorophyll content, and photosynthetic effi-
ciency (J. Zhang et al., 2017; Table 1). Application of melatonin 
to ryegrass plants increased CK levels under heat stress (N. 
Zhang et al., 2014), which might have contributed to the delay 
in leaf senescence. The levels of isopentenyladenine and trans-
zeatin riboside, which decreased under heat stress, recovered 
in melatonin-treated plants, showing a positive interaction 
between endogenous levels of CKs and melatonin. In con-
trast, under optimum environmental conditions, the applica-
tion of melatonin had no effect on CK levels. The level of 
two CK biosynthesis genes (LpIPT2 and LpOG1) was induced 
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by melatonin when plants were exposed to heat stress. Also, 
two TFs, A-ARRs and B-ARRs, involved in the CK signaling 
pathways, decreased and increased, respectively (J. Zhang et al., 
2017). These studies demonstrate that the mitigation of heat 
stress by melatonin is the result of crosstalk between melatonin 
and CKs (J. Zhang et al., 2017).

Various studies have shown that exogenous application 
of melatonin helps to enhance antioxidant enzyme per-
formance and reduce the harmful effects of oxidative stress 
in maize plants grown under a rain-shelter in the field (Ye 
et al., 2016), sunflower (Arora and Bhatla, 2017), tomato, apple 
(Wang et al., 2013), grapes (Meng et al., 2014), Malus species 
(C. Li et  al., 2015), and tomato seedlings (Liu et  al., 2015b; 
Table 1). Application of melatonin alleviated H2O2-mediated 
cell damage and increased plant growth and ROS content 
in bermuda grass (Cynodon dactylon) under heat stress (Chan 
and Shi, 2015). Exogenous application of melatonin caused 
induced expression of class A1 HSFs (HSFA1s) and HSP in 
Arabidopsis (H. Shi et al., 2015), and improved seed germin-
ation and HSP contents. Further, melatonin enhanced expres-
sion of HSFA1s and HSP in Phacelia tanacetifolia (Tiryaki and 
Keles, 2012), regulated the ABA and CK pathways, enhanced 
photosynthesis in L.  perenne (J. Zhang et  al., 2017), reduced 
H2O2 content, increased Pro content, and raised the anti-
oxidants in kiwifruit seedlings under heat stress (Liang et al., 
2018). In heat-stressed tomato plants, endogenous melatonin 
was manipulated by up-regulation of the N-acetylserotonin 
methyltransferase (ASMT) gene, and exogenous melatonin re-
duced the levels of ubiquitinated and insoluble proteins and in-
duced HSPs to prevent unfolding and denaturation of proteins 
(Xu et al., 2016). Further studies are required to understand the 
functioning of this molecules under stress situations, especially 
its role in protecting heat-stressed plants, as well its interaction 
with other phytohormones.

Polyamines

PAs are ubiquitous nitrogenous compounds present in all 
living cells that affect various cellular responses (Igarashi and 
Kashiwagi, 2000; Zhao and Yang, 2008; Sengupta et al., 2016). 
Various forms of PAs—diamine (putrescine; Put), triamine 
(spermidine; Spd), and tetramine (spermine; Spm)—are the 
three most abundant PAs in plants. Other types, including 
homospermine and cadaverine, are present in some plants 
(Sengupta et al., 2016). Plants accumulate PAs in various parts 
during different developmental stages and when exposed to 
abiotic stress conditions. The biological action of PAs is attrib-
uted to their cationic nature, which facilitates cooperation with 
negatively charged biomolecules such as DNA, RNA, proteins, 
and phospholipids (Kaur-Sawhney et al., 2003; Liu et al., 2006; 
Pang et al., 2007; Groppa and Benavides, 2008; Kusano et al., 
2008). Variations in the endogenous content of PAs have been 
broadly examined when plants are subjected to a single stress 
or a combination of stresses. Increased concentrations of PAs 
may be due to de novo synthesis and reduced degradation of PA 
pathways; however, the exact mechanism is not well known 
(Sengupta et al., 2016). The role of Put in abiotic stress toler-
ance is of great importance, but its role in heat stress is not well 

understood (Kakkar and Sawhney, 2002). Put, Spm, and Spd, 
and some unusual PAs (non-spermidine and non-spermine) 
have been reported in Canavalia gladiata (Matsuzaki et al., 1990) 
and cultured calluses of a thermotolerant rice cultivar subjected 
to heat shock (45 °C, 30 min) (Roy and Ghosh, 1996). Their 
presence positively correlated with the activity of adenine de-
carboxylase (ADC), the enzyme involved in PA biosynthesis. 
Some other unusual PAs include thermospermine, homo-
caldopentamine, and homo-caldohexamine, which have been 
identified in thermotolerant alfalfa plants (Bagga et al., 1997). 
Pollen grains and cell cultures of a cotton genotype accumu-
lated caldine and thermine under high temperature (Kuehn 
et al., 1990); their functional relevance in heat tolerance is yet 
to be investigated. A significant increase in conjugated and free 
PAs was reported in heat-tolerant cotton and rice plants along 
with enhanced PA biosynthetic and oxidizing enzymes during 
high-temperature stress (Evans and Malmberg, 1989; Cona 
et  al., 2006). Since S-adenosyl-l-methionine decarboxylase 
(SAMDC) is a key regulatory enzyme in the biosynthesis of 
PAs, increasing PA biosynthesis by manipulating the activity of 
this enzyme may prove beneficial for creating thermotolerant 
genotypes. Introgression of SAMDC DNA, isolated from yeast 
in transgenic tomato, produced high Spm and Spd levels and 
enhanced the activity of antioxidants under heat stress (Cheng 
et al., 2009). In Arabidopsis, exposure to heat stress increased 
Spm, Put, and Spd contents, and also induced some HSPs 
(HSP101, HSP90, HSP70, and HSP17.6) (Sagor et al., 2013) at 
the same time, suggesting a relationship between them.

There are several studies where exogenous application of 
PAs has imparted thermotolerance, involving diverse cellular 
mechanisms. For example, in mungbean (Vigna radiata; 50 °C 
for 2 h), 1 mM Put was found to protect the plants from heat 
stress; Basra et al., 1997; Table 1). Similarly, in garden tomato 
(S.  lycopersicum), Spd (1  mM) induced heat tolerance by in-
creased expression of PA biosynthesis genes; and at the same 
time up-regulated ethylene-related and oxidation/reduction 
genes (Cheng et  al., 2012). In most instances, PAs were re-
ported to confer heat tolerance by improving the expression 
of antioxidants. Cotton plants, supplied with 10 mM Put, in-
creased their endogenous Put content (Bibi et al., 2012) and 
showed improvement under heat stress. Wheat plants supplied 
with 10 µM Put had elevated activities of enzymatic and non-
enzymatic antioxidants and reduced lipid peroxidation in roots 
and shoots (Asthir et al., 2012), when grown under heat stress. 
Similarly, in another study, also in wheat, foliar spray of Put 
lowered the activities of IAA oxidase, POD, and polyphenol 
oxidase (PPO), and enhanced CAT and SOD efficiency under 
heat stress (Hassanein et al., 2013). A similar situation was ob-
served in soybean, where exogenous application of Put, Spd, and 
Spm (1 mM) improved growth, prevented membrane damage, 
and minimized oxidative injuries (Amooaghaie and Moghym, 
2011). In beans too, pre-treatment with Spm and Spd inhibited 
peroxidase but amplified CAT activities (Velikova et al., 2000) 
to reduce oxidative damage under heat stress. In Arabidopsis, 
exogenous treatment with 0.05  mM and 0.1  mM Spm re-
duced oxidative damage and increased chlorophyll content 
(Sagor et al., 2013). Likewise, in rice, exogenous application of 
Spd ameliorated heat stress-induced damage and enhanced the 
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activities of antioxidant enzymes and concentrations of anti-
oxidants (Mostofa et  al., 2014). In tomato, a different mech-
anism was noticed, where exogenous application of 4  mM 
Spd improved the heat stress tolerance in both heat-sensitive 
and heat-tolerant cultivars of tomato by enhancing tolerance 
to thermal degradation of pigment–protein complex structure 
and working of PSII (Murkowski, 2001). Wheat treated with 
Arg and Put (1.25 mM/2.5 mM) expressed heat tolerance by 
increasing the endogenous contents of Put, Spd, total PAs, total 
amino acids, and the ratio of essential to non-essential amino 
acids (Hassanein et al., 2013). Thus, the mechanisms by which 
PAs confer heat tolerance are diverse and include stabilizing 
membranes (Minocha et al., 2014), increasing antioxidant en-
zymes (Marco et al., 2015), enhancing chlorophyll concentra-
tion (Liu et al., 2016), stabilizing the photosynthetic apparatus 
(Murkowski, 2001), and restoring plant water status through 
osmoregulation (Nahar et al., 2017).

Osmoprotectants

Osmolytes, such as Pro, are considered compatible with cellular 
functioning, since it does not interfere with cellular metabolism, 
even at higher concentrations (Sung et  al., 2003). Pro brings 
about osmoregulation (Jagels, 1983), oxidative stress mitiga-
tion, particularly by scavenging ROS (Mohanty and Matysik, 
2001; Takagi, 2008), and regulation of the NAD+/NADH ratio 
(as NAD+) produced during the synthesis of Pro (Verbruggen 
and Hermans, 2008) (Fig. 2). It also modulates the stabilization 
of proteins (Hayat et  al., 2012), enzymes, and biomembranes 
including the conservation of energy and amino acids for post-
stress growth (Aspinall, 1981) and the stabilization of the double-
stranded helical structure of DNA (Rajendrakumar et al., 1997). 
Free Pro accumulation, as a consequence of heat stress, has 
been reported in many crops including tomato (Rivero et al., 
2004), mulberry (Morus alba; Chaitanaya et  al., 2001), cotton 
(De Ronde et al., 2000), cabbage and Chinese cabbage (Brassica 
oleracea; Hossain et al., 1995), apple (Malus domestica Borkh.; Park 
et al., 2001), chickpea (Chakraborty and Tongden, 2005), wheat 
(Hasan et al., 2007), French beans (Phaseolus vulgaris L.; Nagesh 
Babu and Devraj, 2008), and tobacco (Cvikrová et al., 2012). In 
soybean, Pro concentration was higher in acclimated plants than 
in non-acclimated plants, and recovered faster to indicate the 
protective role of Pro under stress conditions (Yadegari et al., 
2007). Exogenous application of Pro (Table 1) to heat-stressed 
plants reduced membrane damage in grapevines (Ozden 
et al., 2009), which was confirmed by Kaushal et al. (2011) in 
chickpea. The chickpea plants also had reduced oxidative injury, 
coupled with elevated levels of enzymatic (SOD, CAT, APX, 
and GR) and non-enzymatic [ascorbate (ASC) and glutathione 
(GSH)] antioxidants, indicating up-regulation of the antioxi-
dant defense system and enhanced heat tolerance. In sugarcane, 
nodal buds soaked in 20  mM Pro as well as GB performed 
better under heat stress. The treatment also reduced H2O2 pro-
duction and improved the accumulation of soluble sugars, free 
Pro, GB, and K+ and Ca2+ contents (Rasheed et al., 2011). In 
barley leaves, exogenous application of Pro and GB increased 
PSII stability at high temperature (45 °C), with Pro more ef-
fective than GB (Oukarroum et al., 2012), thus rendering the 
plants more heat tolerant.

GB plays an important role as a compatible solute under 
heat stress and has multiple mechanisms of action (Chen and 
Murata, 2002). It stabilizes the activities and structures of pro-
tein and enzyme complexes and sustains membrane integ-
rity against the inhibitory impacts of salinity and temperature 
stresses (Sakamoto and Murata, 2000; Table 1). The biosynthesis 
of GB is stimulated under stressful conditions (Jagendorf and 
Takabe, 2001). Endogenous biosynthesis or exogenous applica-
tion of GB has a stabilizing effect on photosynthetic membranes 
under heat stress (Allakhverdiev et al., 1996). GB plays an im-
portant role in signaling, inhibition of water loss, stabilization 
of proteins, protection of enzymes and protein complexes from 
heat-induced destabilization, and as an energy source (Gorham, 
1995; Chen and Murata, 2011). It also inhibits ROS accumula-
tion (Chen and Murata, 2002, 2011), thus preventing oxidative 
damage (Fig. 2). In vitro studies have indicated that GB plays an 
important role in the protection of photosynthetic machinery 
by protecting the PSII complex (Allakhverdiev et al., 1996), as 
reported in transgenic tobacco (Liang et  al., 1997); however, 
no reports are available on in vivo protection of photosynthesis 
against high-temperature stress. Under heat stress, high GB ac-
cumulation has been observed in various crops including maize 
(Quan et al., 2004) and sugarcane (Wahid and Close, 2007), but 
there are many important crops such as rice, mustard, soybean, 
potato, tobacco, and Arabidopsis that do not accumulate GB, 
and are therefore potential targets for engineering GB bio-
synthesis (McCue and Hanson, 1990) to increase heat toler-
ance. High endogenous GB levels reduced the heat-induced 
ion leakage in barley (Wahid and Shabbir, 2005), and improved 
tolerance to drought and heat stress in wheat (G.P. Wang et al., 
2010), which correlated with enhanced photosynthesis and ac-
tivation of enzymatic and non-enzymatic antioxidants to re-
duce the impact of oxidative stress. The involvement of GB in 
heat tolerance has been shown through exogenous application 
to heat-stressed plants. In barley seedlings, exogenous applica-
tion of 20 mM GB promoted seed germination and yield due 
to improved shoot water content, compared with a marked 
reduction with no GB treatment (Wahid and Shabbir, 2005; 
Table 1). In tomato grown under heat stress, GB supplemen-
tation (0.1–5 mM) improved seed germination and seedling 
growth under high temperature (Li et al., 2011); it protected 
PSII and increased yield due to increased carbon assimilation 
(Ashraf and Foolad, 2007).

Reactive oxygen species scavengers

ASC is an important antioxidant molecule, and a major sub-
strate for the scavenging ROS (Smirnoff, 2000). The apoplastic 
content of ASC is the major signaling molecule for oxidative 
stress, although its amount and exposure time characterize the 
general redox status of the cell (Akram et  al., 2017; Table 1). 
Exogenous application of ASC (50 μM) imparted high tolerance 
to heat stress (40/30 °C and 45/35 °C; day/night temperatures) 
in mungbean (Kumar et al., 2011). Furthermore, ASC-treated 
plants had significant reductions in H2O2 and malondialdehyde 
(MDA) contents (Kumar et al., 2011). Similar observations were 
made for strawberry (Ergin et al., 2014) and rice plants (Zhang 
et al., 2018), where the exogenous application of ASC increased 
antioxidant activities to mitigate heat-induced injuries. In a 
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recent study, the impact of ASC (5 mM) on three hormones 
(ABA, SA, and auxin) and some physiological parameters was 
measured in a maize cultivar under heat stress. ASC treatment 
increased chlorophyll content, relative leaf water content, and 
stomatal conductance, along with a significant reduction in 
SA level and increased auxin and ABA contents (Dinler et al., 
2014), suggesting that thermotolerance imparted by ASC might 
primarily involve the latter two hormones, though SA has 
an established role in this regard. Further studies are needed 
to determine the mechanism of interaction of ASC with 
phytohormones in protection from heat stress.

GSH is another non-enzymatic, low molecular weight anti-
oxidant molecule that participates in ROS and methylglyoxal 
(MG) detoxification in stressed environments by interacting 
with hormones and other signaling molecules (Hasanuzzaman 
et al., 2017; Table 1). Previous studies have shown its essential 
role in meristem development, pollen germination, pollen tube 
growth, embryo development (Pellny et  al., 2009; Zechmann 
et al., 2011), and heavy metal detoxification (Dhankher et al., 
2002). The protective role of GSH under heat stress has been re-
ported in fewer studies; the spatial and temporal changes in GSH 
pools and its role in redox signaling and defense processes are 
important in thermotolerance mechanisms (Szalai et al., 2009). 
High GSH content imparted heat stress tolerance in maize 
at the seedling stage (Nieto-Sotelo and Ho, 1986). Similarly, 
increased total GSH content conferred thermotolerance in 
wheat, maize, and mungbean (Nieto-Sotelo and Ho, 1986; 
Dash and Mohanty, 2002; Nahar et al., 2015). An elevated level 
of GSH in heat-stressed mustard seedlings was related to the 
efficient removal of H2O2 due to improved GR activity (Dat 
et al., 1998a). Likewise, a significant rise in endogenous GSH 
level was observed in apple peel exposed to extreme temper-
atures and solar radiation, which helped in acclimating to heat 
stress (Zhang et al., 2008). Pre-treatment of mungbean seedlings 
with 0.1 mM GSH improved physiological performance as well 
as antioxidant defense systems during heat shock (Nahar et al., 
2015; Table 1). The exogenous application of GSH provided 
significant thermotolerance (high root zone temperature) in 
cucumber seedlings by regulating photosynthesis, antioxidant 
activity, and osmolyte accumulation to improve physiological 
adaptation (Ding et  al., 2016). In a recent study, Kumar and 
Chattopadhyay (2018) revealed that GSH induced the ex-
pression of some HSP genes (BiP3, HSP70B, and HSP90.1) 
in Arabidopsis by activating the promoters of these genes to 
confer heat tolerance. As both GSH and ASC are promising 
candidates involved in antioxidant defense pathways during 
heat stress, significant efforts are needed to decipher their roles 
in thermotolerance, especially their interactive involvement 
with osmolytes, hormones, and HSPs.

Stress priming-induced heat tolerance, and 
thermoprotectants

Thermo-priming of plants can induce heat tolerance by 
establishing stress memory during the priming treatments. Such 
a type of induced thermotolerance reprograms the metabolic 
networks and assists in sustaining metabolic homeostasis under 

heat stress. For instance, multiple heat priming of winter wheat 
seedlings improved thermotolerance at a later heat stress by 
increasing the subcellular levels of antioxidants (X. Wang et al., 
2014). Thermotolerance induced in wheat plants can even be 
remembered and inherited by the progeny (Zhang et al., 2016). 
A  recent study in wheat (Fan et  al., 2018) showed that heat 
priming at the time of stem elongation stage and booting sig-
nificantly inhibited the damage to grain yield, resulting from 
heat stress during grain filling. Enhanced thermotolerance was 
associated with an increase in sucrose content as well as sucrose 
synthase activity in leaves; it also improved photosynthetic cap-
acity, chlorophyll concentration, and stomatal conductance. At 
the same time, primed plants showed significantly less oxida-
tive damage and up-regulated activities of antioxidants such 
as SOD and peroxidase (Fan et al., 2018). It was also noticed 
that cross-treatments by other stresses also induced heat tol-
erance. For instance, the drought-primed plants of tall fescue 
(Festuca arundinacea) showed heat tolerance, which was attrib-
uted to maintenance of a higher leaf water content, chloro-
phyll content, and photochemical efficiency, and lower damage 
to membranes. At the same time, the accumulation of lipids 
(phospholipids and glycolipids) increased, which stabilized the 
membranes under subsequent heat stress (Zhang et al., 2019). 
Several molecules were implicated in heat tolerance in thermo-
primed Arabidopsis plants subsequently exposed to heat stress 
(Serrano et al., 2019), which were categorized into carbohy-
drates (sucrose, raffinose family oligosaccharides, stachyose, 
galactinol, and raffinose), branched chain amino acids, tocoph-
erols, osmolytes, and antioxidants. The primed plants showed 
significantly more expression of these molecules to improve 
thermotolerance. The molecular mechanisms involving genetic 
and epigenetic regulatory systems are reported to be involved 
in heat responses (Liu et al., 2015a), which may have a role in 
establishing memory associated with stress priming (Avramova, 
2015; Brzezinka et  al., 2016). Recently, alternative splicing, a 
post-transcriptional regulatory mechanism, has been reported 
to be involved in heat shock memory (Ling et  al., 2018) in 
heat-primed Arabidopsis plants. These studies indicated that 
priming with a non-lethal heat stress resulted in de-repression 
of splicing after subsequent exposure to stress, while a signifi-
cant repression was noticed in non-primed plants, thereby 
linking splicing memory to thermotolerance. The types and 
role of phytohormones involved in stress memory during heat 
priming or acclimation, which confer thermoprotection at a 
later stage, need to be probed.

Crosstalk of PGRs under heat stress

Plants can sense small disturbances in the outer environment 
and trigger various signaling cascades in the cells that com-
municate with downstream signals transduced by various 
phytohormones (Dobrá et  al., 2015). Considering these 
mechanisms, phytohormones interplay by activating either a 
common transducer or a phosphorylation event (Fahad et al., 
2016). Due to the involvement of different phytohormones 
and signaling molecules in the heat stress response, cross-
talk among them is a complicated process that requires deep 
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insight (Depuydt and Hardtke, 2011; Fig. 3). Signal transduc-
tion mechanisms initiate genetic modulations that directly 
influence the synthesis or action of other hormones, repre-
senting an additional way of hormonal crosstalk under heat 
stress (Xia et al., 2015). The crosstalk among auxins, CKs, GA, 
ABA, and ethylene is important for the whole plant as well as 
organ-specific adaptation and growth responses under abiotic 
stress conditions. Auxin (IAA) and BRs may interact during 
heat stress; exogenous application of auxin enhanced expres-
sion of the BR-biosynthesizing gene DWARF4, indicating an 
important interaction between BR and auxin to control hypo-
cotyl expansion in Arabidopsis under heat stress (Gray et  al., 
1998; Maharjan and Choe, 2011). Similarly, IAA along with GA 
and BR plays an important role in controlling plant growth, 
particularly stem elongation during heat stress (Golldack et al., 
2013). Previous data showed the direct link between the IAA, 
GA, PIF4, and stem elongation response under heat stress, 
with both GA and IAA stimulating the expression of the PIF4 
gene to induce hypocotyl elongation under high temperature 
(Stavang et al., 2009). In addition, GA participates in hormonal 
crosstalk to transduce environmental inputs and act antagonis-
tically to ABA (Depuydt and Hardtke, 2011).

CK responds to environmental cues in plants and this is be-
lieved to be related to its role in maintaining the overall hor-
monal balance and its interaction with other hormones such 
as ABA, ethylene, JA, and SA, which are directly involved in 
abiotic stress responses (Hare et  al., 1997; Thu et  al., 2017). 
Complex crosstalk and interactions have been observed be-
tween CKs and ABA under heat stress (Wang et al., 2011; Ha 
et al., 2012). It is assumed that CKs and ABA work antagon-
istically in various physiological and developmental events, as 
well as in response to different environmental stresses (Catala 
et  al., 2007). Interestingly, wheat kernels under heat stress 
showed a marked reduction in ZR content, whereas IAA, GA, 
and ABA contents increased (Yang et al., 2016). Likewise, ex-
ogenous application of melatonin to perennial ryegrass under 
heat stress significantly increased CK and melatonin levels, but 
reduced ABA levels (J. Zhang et al., 2017). Cytokinin biosyn-
thetic genes and their corresponding TFs were up-regulated 
by melatonin under heat stress, whereas ABA-responsive genes 
were down-regulated (J. Zhang et al., 2017). CKs also interact 
with other growth regulators such as BR and SA to elicit many 
physiological processes under heat stress (Peleg and Blumwald, 
2011). A recent study showed that expression of IPT (a gene 
responsible for CK biosynthesis) in tobacco and rice signifi-
cantly altered gene expression related to hormone biosynthesis 
as well as regulation to impart thermotolerance (Peleg et al., 
2011). As mentioned earlier, heat stress during anthesis leads 
to major yield losses; in passion fruit (Passiflora edulis), flower 
abortion involves two phytohormones, CK and GA, which act 
differently in this situation, with GA stimulating flower abor-
tion and CK application reducing flower abortion, to provide 
heat tolerance (Sobol et al., 2014).

Stress hormones such as ethylene and ABA retard growth 
by changing auxin, GA, and CK activity in a tissue-dependent 
manner (Wolters and Jürgens, 2009; Peleg and Blumwald, 
2011). Moreover, both ABA and ethylene act antagonistic-
ally to GA, and this crosstalk occurs at the DELLA protein 
level (Achard et  al., 2006; Wolters and Jürgens, 2009). ABA 
and ethylene seem to further interfere with this crosstalk to 

restrict plant growth (Beaudoin et  al., 2000). ABA regulates 
stomatal behavior during stress periods; however, recent find-
ings suggest that other hormones such as ethylene, CKs, JA, SA, 
BRs, and NO also control the opening and closing of stomata 
(Acharya and Assmann, 2009). Hormones, especially ABA, SA, 
JA, BRs, and NO, lead to stomatal closure, whereas IAA and 
CKs stimulate stomatal opening under heat and drought stress. 
Further, NO functions as a key mediator in the ABA-regulated 
signaling web to induce stomatal closure (Ribeiro et al., 2009).

In Arabidopsis, high temperature inhibits germination by 
enhancing ABA levels that suppress both GA synthesis and 
translocation (Toh et  al., 2008). GA is also linked with SA, 
and exogenous application of GA in heat-stressed Arabidopsis 
stimulated seed germination and growth by regulating SA ex-
pression. GA3 induces the expression of ICS1 (isochorismate 
synthase 1)  and NPR1 [non-expressor of pathogenesis-
resistance (PR) genes] involved in SA synthesis and action, re-
spectively (Alonso-Ramírez et al., 2009).

Similarly, ethylene and JA act together in response to environ-
mental stimuli. The key precursor of ethylene signaling and re-
sponse is the ERF (ethylene response factor), whose expression 
increases on exposure to heat stress (Müller and Munné-Bosch, 
2015). The ERF binds with DRE (dehydration response element-
binding factor) and induces expression of heat-responsive genes 
such as HSF3, HSP101, and HSP70 to impart thermotolerance 
(Müller and Munné-Bosch, 2015). Ethylene and JA may act as 
antagonists to control heat stress responses; ethylene is a negative 
regulator of the heat stress response (Clarke et al., 2009). Studies 
have indicated that the ein2 mutant displayed thermotolerance, 
suggesting that the EIN2-regulated pathway negatively controls 
thermotolerance (Clarke et al., 2009). Additionally, ethylene pro-
duction was augmented by JA in a study on the wild type and 
opr3 mutant (Sharma and Laxmi, 2016).

Other PGRs also communicate with phytohormones; for 
instance, the endogenous content of ASC promoted the bio-
synthesis of many hormones and signal transduction path-
ways in which hormones intervened in stressed environments 
(Pastori et al., 2003). ASC intensity in tomato plants was correl-
ated with gene activation concerned with hormone signaling, 
relative to ASC synthesis that in turn was reliant on oxidative 
status (Lima-Silva et  al., 2012). Sadak et  al. (2013) observed 
that the endogenous concentrations of ASC and citric acid (2:1 
ratio) enhanced the levels of IAA, GA, BRs, and zeatin, and re-
duced ABA content. In another study, Ye et al. (2012) observed 
a promising interaction between ASC and plant hormones in 
rice. Since ASC acts as a cofactor to synthesize ethylene and 
ABA (Barth et al., 2006; Ye et al., 2012; Zhang, 2013), the cel-
lular ASC content via the interface with plant hormones con-
trols a variety of signal transduction pathways to normalize 
growth and development (Pastori et al., 2003). Thus, it is ex-
pected that the interaction between ASC and phytohormones 
establishes redox homeostasis and further developmental re-
sponses in plants under heat stress (Awasthi et al., 2015).

Prospects and conclusions

The heat stress response is a complex phenomenon involving 
numerous cellular changes at several levels of organization, 
which prepare the cells for thermotolerance under mild stress 
conditions, yet these mechanisms may fail to function and 
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protect plants under severe heat conditions, resulting in cel-
lular and plant death. Cellular changes involve various mol-
ecules with diverse roles in signaling and defense mechanisms 
to confer protection, including stabilizing cell membranes and 
organelles from oxidative damage, maintaining photosynthesis 
by stabilizing the reaction centers of the electron transport 
chain, protecting enzymes from denaturation, saving native 
proteins by producing chaperones, controlling stomatal con-
ductance and water relations to regulate leaf temperature, and 
sustaining growth by up-regulating various growth-related 
molecules. Considering these diverse protective mechanisms, 
cells need to produce phytohormones, osmolytes, antioxi-
dants, and stress-related proteins, which can interact with each 
other to reach an appropriate defensive state (basal or acquired 
thermotolerance). While there are several reports on changes 
in the expression of these molecules, the interactive mechan-
isms that impart thermoprotection remain elusive. Moreover, 
studies involving their intermutual effects are needed to iden-
tify the thermoprotective mechanisms. One of the ways to 
mitigate heat stress damage involves treatment of the plants at 
one stage or other with exogenous application of some mol-
ecules such as phytohormones, osmoprotectants, and ROS 
scavengers. Studies on their exogenous application have pro-
vided some strong evidence about the roles of these molecules 
in conferring heat tolerance; they are largely restricted to con-
trolled environments, and need to be validated under realistic 
field environments. Moreover, it is highly challenging to find 
out their appropriate concentrations, duration of the treatment, 
and stage of the plant to be treated in order to achieve the 
desired results. For this purpose, each crop species requiring 
protection from heat stress needs to be tested for its response 
to diverse types of molecules implicated in thermoprotection. 
Furthermore, studies are needed to probe the finer mechanism 
and up-regulation of hormone-responsive genes involved in 
induction of heat tolerance. Establishing a common role for 
hormones in limiting heat-induced injuries may provide sig-
nificant knowledge regarding the field application of these 
molecules as well as their implications in breeding programs 
(Macková et al., 2013). Further investigations on genetic ma-
nipulation of these molecules in target crops are needed to val-
idate their involvement in thermoprotection. A combination 
of treatments, which protect the leaves from heat-induced oxi-
dative damage and save the flowers from abortion at the same 
time, would be vital to enhance the performance of the plants 
under heat stress. Considering the impacts of climate change, 
increase in temperature would be a primary issue, coupled 
with drought stress, affecting agriculture, which would re-
quire quick as well as long-term solutions involving several 
scientific disciplines. Many studies have shown successful 
management of heat stress involving exogenous application 
of thermoprotectants, described above, but largely under a la-
boratory environment, and to a limited extent in the field en-
vironment, which appears to limit their successful application. 
Further research would be needed to test these molecules, in-
dividually and in combination, under heat and drought envir-
onments, under a field environment, to extend their practical 
usage to improve stress tolerance in food crops.
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Rising global temperatures due to climate change are affecting crop performance in
several regions of the world. High temperatures affect plants at various organizational
levels, primarily accelerating phenology to limit biomass production and shortening
reproductive phase to curtail flower and fruit numbers, thus resulting in severe
yield losses. Besides, heat stress also disrupts normal growth, development, cellular
metabolism, and gene expression, which alters shoot and root structures, branching
patterns, leaf surface and orientation, and anatomical, structural, and functional aspects
of leaves and flowers. The reproductive growth stage is crucial in plants’ life cycle, and
susceptible to high temperatures, as reproductive processes are negatively impacted
thus reducing crop yield. Genetic variation exists among genotypes of various crops to
resist impacts of heat stress. Several screening studies have successfully phenotyped
large populations of various crops to distinguish heat-tolerant and heat-sensitive
genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods,
spikes, spikelets), and seeds (or grains), which have led to direct release of heat-
tolerant cultivars in some cases (such as chickpea). In the present review, we discuss
examples of contrasting genotypes for heat tolerance in different crops, involving many
traits related to thermotolerance in leaves (membrane thermostability, photosynthetic
efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen
viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules
(antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins),
and “omics” (phenomics, transcriptomics, genomics) approaches. The traits linked to
heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of
crops to enhance their thermotolerance. Involving these traits will be useful for screening
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contrasting genotypes and would pave the way for characterizing the underlying
molecular mechanisms, which could be valuable for engineering plants with enhanced
thermotolerance. Wherever possible, we discussed breeding and biotechnological
approaches for using these traits to develop heat-tolerant genotypes of various
food crops.

Keywords: heat-stress, crops, tolerance, agriculture, physiology

INTRODUCTION

The Earth’s increasing average surface temperature due to
climate change is proving to be stressful for all phases of
plant growth and development, particularly in tropical and
subtropical countries (Li B. et al., 2018). Among abiotic stresses,
high temperature stress is a major factor disrupting plants’
performance (Wahid et al., 2007). Each plant species has its
own maximum, optimum and minimum temperatures, known
as cardinal temperatures. Temperatures below or above these
thresholds causes stress (Wahid et al., 2007). Above optimum
(high-temperatures) affect plant’s morphological, physiological,
biochemical and molecular traits, which ultimately leads to
poor growth and yields (Hasanuzzaman et al., 2013). The
impact of high-temperature (heat) stress depends on intensity,
timing, duration of stress and type of plant species (Wahid
et al., 2007). Although all stages of plant development can
be negatively impacted by heat stress, reproductive stages of
crop are relatively more sensitive than vegetative stages (Prasad
et al., 2008b, 2017). Heat stress during seed germination
reduces germination percentage, seedling emergence, and radicle
and plumule growth in germinated seedlings, resulting in
abnormal seedlings with poor seedling vigor (Hasanuzzaman
et al., 2013). At later vegetative stages, heat stress adversely
affects photosynthesis, leaf area development leading to lower
biomass production; whereas, stress during reproductive stages
of development results in lower seed numbers and decrease
seed size resulting in lower yields (Bita and Gerats, 2013;
Prasad et al., 2017). Different crops and their genotypes
vary in their heat sensitivity, the response is generally
stage-and trait-specific, which can reveal mechanisms related
to heat tolerance (Bita and Gerats, 2013; Prasad et al.,
2017). Thus, genotypes having contrasting heat sensitivity
have been identified in several crops (detailed below), that
yielded vital information on various traits controlling heat
tolerance (Figure 1).

IMPACT OF HEAT STRESS

Heat stress can have damaging effects (direct and indirect) on
all stages of plant growth and development (Kaushal et al.,
2016). Phenological stages differ in their sensitivity to heat
stress, and vary between species and genotypes of same species.
Various plant tissue injuries have been observed under heat
stress, such as leaf and twig scorching, leaf, branch and stem
chlorosis and necrosis, leaf senescence and abscission, root
and shoot growth inhibition, flower drop, and fruitdamage,

which consequently reduce plant productivity (Vollenweider
and Günthardt-Goerg, 2005). Heat stress primarily affects the
stability of plasma membranes, several proteins, cytoskeleton
organization, and the efficiency of cell enzymatic reactions
and creating metabolic disparity (Xu et al., 2006). Heat-stress-
induced oxidative stress causes peroxidation of membrane
lipids, proteins, and nucleic acids (Mittler et al., 2004). Due
to reduced membrane stability, electrolyte leakage increases,
which intensifies the membrane injuries (Wahid et al., 2007).
Physiological processes, such as photosynthetic activity and
sucrose metabolism, are highly sensitive to heat stress (Berry
and Bjorkman, 1980). At the subcellular level, disruption of
structural organization of thylakoids and loss of grana stacking
in chloroplasts are the primary sites of heat injury (Sharkey,
2005), which lead to changes in electron transport to PSII (Lu
and Zhang, 2000). Heat stress also damages PSII and inhibits its
repair due to the generation of reactive oxygen species (ROS)
(Allakhverdiev et al., 2008). Heat stress affects enzymes in Calvin
cycle, including RuBisCo and RuBisCo activase (Camejo et al.,
2005; HanumanthaRao et al., 2016; Bindumadhava et al., 2018),
which hampers photosynthesis and photorespiration. Heat
stress during reproductive stages adversely affects seed-set and
yield in many food legumes, such as chickpea (Cicer arietinum)
(Kaushal et al., 2013), mungbean (Vigna radiata) (Kaur et al.,
2015; HanumanthaRao et al., 2016), peanut (Arachis hypogaea)
(Prasad et al., 1999a,b) and lentil (Lens culinaris) (Bhandari et al.,
2016) and cereals, such as wheat (Wahid et al., 2007; Prasad and
Djanaguiraman, 2014), sorghum (Sorghum bicolor) (Prasad et al.,
2015), barley (Hordeum vulgare) (Barnabás et al., 2008), and
maize (Zea mays) (Kumar et al., 2012). During the reproductive
stage, gametogenesis and fertilization are highly sensitive to
heat stress, which impairs meiosis in both male and female
organs, affects pollen germination and pollen tube growth,
reduces ovule viability and ovule size, alters stigmatic and
style positions, reduces stigma receptivity, disturbs fertilization
processes, affects embryo fertilization, and impedes endosperm
growth (Farooq et al., 2017; Prasad et al., 2017). Heat stress
hastens the rate of grain filling, but reduces the duration of grain
filling, as reported in wheat (Prasad et al., 2008a; Farooq et al.,
2011), which may be due to direct effects of heat stress on the
source–sink relationship that reduce photoassimilate supply to
developing seeds (Calderini et al., 2006). The detrimental effects
of heat stress can be alleviated by developing crop varieties with
improved heat tolerance. The most popular approach used by
many plant researchers has been screening a large population
to identify contrasting genotypes for elucidating physiological,
biochemical, and molecular mechanisms governing heat
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FIGURE 1 | Screening traits for developing heat tolerant genotypes. Different traits based on leaf, growth, pollen grains biochemical and yield can be used for the
selection of genotypes. Cell membrane thermostability (CMT), canopy temperature depression (CTD), carbon isotope discrimination (CID), stay green trait (SGT),
chlorophyll fluorescence, stomatal conductance, photosynthetic rate and sucrose are the traits that can be assessed from leaves. However growth pattern such as
plant biomass, plant height, and RSA of different genotypes can also be compared for selection of contrasting genotypes. Similarly, reproductive wellness of
genotypes can be checked by using pollen based traits such as pollen viability test, pollen germination test and pollen tube length. The mitigation of cellular stress by
genotypes can be compared by analysis of oxidative stress damage (production of free radicals) and production of antioxidants, metabolites and heat shock proteins
(HSPs) whereas yield based traits such as seed number, seed weight, seed filling rate and duration can also be employed for selection purpose.

tolerance. Understanding such mechanisms will pave the way for
improving crop genotypes under heat stress. Here, we discuss
how heat stress impacts traits related to stress tolerance in
contrasting genotypes of various crops to provide further clues
for breeders and agronomists for improving the selection of
heat-tolerant genotypes across crop species. Heat stress is often
accompanied by drought stress; the impacts of heat stress are
worsened in drought-stressed plants, which are manifested in
various organizational changes in plants (Sehgal et al., 2017),
hence, wherever possible, we have also included some examples
where genotypes of crops have been screened against combined
heat and drought stress situations.

MECHANISMS GOVERNING
THERMOTOLERANCE

Plants can endure two types of mechanisms to cope with heat
stress: (1) basal thermotolerance (inherent ability of plant) and
(2) acquired thermotolerance (induced by pre-exposure to higher
but non-lethal temperatures) (Bokszczanin and Fragkostefanakis,
2013). Acquired thermotolerance has an important role to play in
plant survival (Kotak et al., 2007). Hence, the heat stress response
is a genetically controlled process that can be stimulated by mild
or sub-lethal temperatures and further trigger the onset of heat-
stress response in plants (Charng et al., 2006). The heat-stress
response in plants is mainly conserved via cellular compartments
and regulatory networks (Wahid et al., 2007). Plants have evolved
various short-term acclimation mechanisms and long-term
adaptations in response to heat stress. Short-term acclimation

mechanisms include leaf orientation, transpirational cooling, and
changes in membrane lipid composition (Wahid et al., 2007).
For longer term adaptations, plants activate heat-stress tolerance
mechanisms, such as heat stress sensing through various sensors
and regulating downstream signal transduction pathways (e.g.,
lipidome, metabolome, transcriptome, and proteome) to modify
gene expression to ensure survival (Sung et al., 2003; Bokszczanin
and Fragkostefanakis, 2013; Dang et al., 2013).

Major adaptive mechanisms that induce thermotolerance in
plants include amplified production of thermoprotectants, such
as secondary metabolites, compatible solutes, ROS scavenging
mechanisms, and heat-shock proteins (HSPs) (Nakamoto and
Hiyama, 1999; Sakamoto and Murata, 2002; Wahid et al., 2007;
Mittler et al., 2012). During severe heat stress, ROS generated
as a byproduct of aerobic metabolism negatively affect cellular
metabolism, such as peroxidation of lipid membranes and
damage to nucleic acids and proteins (Bita and Gerats, 2013).
Plants activate enzymatic and non-enzymatic ROS scavenging
systems to defend this ROS production. The main ROS
scavenging enzymes are superoxide dismutase (SOD), catalase
(CAT), peroxidase (POX), ascorbate peroxidase (APX), and
glutathione reductase (GR), and the non-enzymatic systems
include ascorbic acid (ASC) and glutathione (GSH) (Suzuki
et al., 2012). Elevated levels of these antioxidants are crucial
for imparting thermotolerance in plants (Awasthi et al., 2015).
Thus, to cope with heat stress, plants synthesize and accumulate
more stress proteins, including HSPs, which are well-defined
molecular chaperones involved in protein folding, and proper
aggregation, translocation, and degradation under normal and
stress conditions, and essential for sustaining cellular stability
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(Vierling, 1991). Five major families of HSPs/chaperones are
HSP60, HSP70, HSP90, HSP100, and the small HSP (sHSP)
family (Wang et al., 2004), which play an important role in
the mitigation of heat-stress effects, especially protecting native
proteins from denaturation. The accumulation of secondary
metabolites, such as carotenoids, isoprenoids, and flavonoids,
augments high-temperature stress tolerance by preventing
peroxidase activity (Havaux, 1998; Loreto et al., 1998; Rivero
et al., 2004). The accumulation of compatible solutes, viz. sugars
(trehalose), sugar alcohols (polyols), proline, glycine betaine,
tertiary, and quaternary ammonium compounds, also provides
heat-stress tolerance in plants (Sakamoto and Murata, 2002). Due
to their low molecular weight, these molecules can buffer the
cellular redox potential under heat stress. Phytohormones, such
as salicylic acid, abscisic acid, brassinosteroids, and polyamines,
also play a significant role in providing thermotolerance to plants
(Ahammed and Yu, 2016; Sharma et al., 2020).

GROWTH-BASED PARAMETERS

Most studies on contrasting genotypes have measured biomass,
plant height, and root growth, with significant variations
identified in various crops subjected to heat stress, either in
laboratory or field experiments, which has resulted in using these
traits to quantify the impact of heat stress. Some examples of the
impacts of heat stress on these traits are described below.

Plant Height
Vegetative growth can be assessed as plant height to distinguish
heat-stress tolerant genotypes (Debnath et al., 2016). In Brassica
juncea L., high temperature (34◦C) after the induction of
flowering significantly affected plant height when grown in
the field, declining by 18.9–30.5% (mean 22.3%), relative to
the control. Genotypes BPR-538-10, NRCDR-2, RH-0216 had
lower heat susceptibility, based on plant height, than genotypes
RGN193, NPJ112 and SKM531 (Chauhan et al., 2009). Heat
stress (>40◦C) reduced plant height in 20 maize genotypes in
the field (Debnath et al., 2016), with the most heat-tolerant
genotype (DTPYC9F119) declining by 2.31% compared with
a 72.2% reduction in the most heat-sensitive genotype LM13.
Assessment of five potato cultivars (L1: 84.194.30; L2:86.61.26;
L3: 87HW13.7, L4: DG81-68, and L5: Desiree) under controlled
environment of combined heat (30 + 1◦C) and drought stress
(PEG 8000) for 21 days revealed severe effects all the cultivars on
plant height, when both the stresses were together, except L2 and
L3 (Handayani and Watanabe, 2020).

Seedling growth could be a potentially useful trait for early
screening against heat stress. For instance, in some tropical
parts of Africa, surface temperatures of tropical soils at planting
time can exceed 50◦C for hours to restrict the germination
and seedling growth (Setimela et al., 2007). Hence, seedling
heat tolerance is critical for adequate crop establishment in the
semi-arid tropics. In a study carried out on sorghum (Sorghum
bicolor) in Zimbabwe, seedling tolerance was estimated as heat
tolerance index (HTI; defined as a ratio of resumed coleoptile
growth after a controlled heat shock, compared to normal

growth). Genetic parameters of HTI were assessed by crossing
four sorghum lines having varying HTI, with three tester lines,
and deriving F1, F2, F3, BC1, and BC11 families for generation
means analysis. HTI was found to be highest (0.71) in Line
IS20969 from Egypt, while an experimental line (290R), from
the University of Nebraska, had the lowest at 0.51. The study
revealed that additive and dominance effects contributed to
coleoptile elongation under normal conditions, but only additive
effects were significant in recovery growth. Epistatic effects were
observed in both normal and heat-stressed environment. General
combining ability (GCA) effects for HTI were highly marked in
both conditions, but specific combining ability (SCA) effects were
negligible. These results showed that it is achievable to enhance
seedling heat tolerance and, thus, improve plant populations of
sorghum in tropical areas where hot soil temperatures occur.

Root System Architecture
The structure, spatial, and temporal configuration of the plant
root system is called root system architecture (RSA) (de Dorlodot
et al., 2007). The organization of primary and secondary roots is
determined by RSA at the macroscale (Smith and De Smet, 2012).
Root microstructure, such as fine root hairs, root tips and their
interactions with soil and soil microorganisms responsible for
water and mineral uptake, is determined by RSA at the microscale
(Wu et al., 2018). Most resources are heterogeneously distributed
in the soil, and the spatial and temporal distribution of roots
determines the crop’s ability to exploit resources (Brussaard et al.,
2007). Better understanding of RSA allows us to determine the
impact of environmental conditions and management practices
on crops, which can help to reduce the difference between genetic
potential and actual average yields (Garnett et al., 2009; Judd
et al., 2015; Ryan et al., 2016). RSA has a vital role in plant–soil–
microbe interactions and resolves the crosstalk with beneficial
soil microbes in the rhizosphere (Ryan et al., 2016).

Across fluctuating environments, RSA is an important
characteristic for adaptability. Therefore, we can improve crop
performance in terms of increased root traits, such as allocation,
morphological, anatomical, or developmental plasticity (Sultan,
2000). There is a direct relationship between individual RSA
plasticity and yield, which is related to more stable plant
performance across changing environments in various species
(Sadras, 2009; Niones et al., 2012, 2013). Root branching is
important for improving the root surface area, enabling the plant
to reach more distant reserves of water and nutrients and improve
soil anchorage. In plants, heat stress generally reduces primary
root length, lateral root density (number of lateral roots per unit
primary root length) and angle of emergence of lateral roots
from the primary root, but has little effect on average lateral root
length (McMichael and Quisenberry, 1993; Nagel et al., 2009).
Root growth has a lower optimal growing temperature than
shoot growth and is thus more sensitive to rising temperatures
(Huang and Gao, 2000; Xu and Huang, 2000). Plant heat
tolerance is directly influenced by root morphological features.
Among Kentucky bluegrass (Poa pratensis) cultivars, increased
root number and root length contributed to variations in
heat tolerance (Lehman and Engelke, 1993). Root phenotyping
of 577 common bean (Phaseolus vulgaris L.) genotypes in
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variable environments of heat, drought, and nutrient deficiency
revealed significant relationships between seed yield and seedling
basal root number, seedling adventitious root abundance, and
seedling taproot length. Under heat stress, adventitious root
number had a positive relationship (13%) with seed yield.
Mesoamerican genotypes of common bean yielded higher than
Andean genotypes under heat stress (Strock et al., 2019). In
canola, heat stress reduced stem diameter by 8.4%, cross-sectional
area by 17.3%, and aboveground biomass by 11.5% in two
genotypes; genotype 13C204 (heat-sensitive) had smaller stem
diameter, cross-sectional area, root length, root surface area, root
biomass, and root volume than Invigor 5440 (heat-tolerant) (Wu
et al., 2017). In another study, heat stress reduced lateral root
elongation (–38%), number of axile roots (–30%), elongation
rate of primary root (–26%), root dry weight (–39%), leaf water
potential (–59%) and leaf area (19%) in heat-sensitive maize
lines K64R, Ac7643, and Ac7729TZSRW when the temperature
increased from 28 to 37◦C. The heat-tolerant lines H16, CML444,
and SC-Malawi were least affected by high temperature (Trachsel
et al., 2010). In maize, screening of 10 genotypes for combined
heat and drought stress (40◦C/60%) revealed DK 6789, NT 6621
as tolerant and genotypes FH 988 and FH 1137 as sensitive on the
basis of root tolerance indices (Ayub et al., 2020).

Biomass
Wheat seedlings grown for 7 days under normal conditions
and then subjected to heat stress (42◦C for 2 h) in a growth
chamber revealed growth differences between genotypes (Gupta
et al., 2013). In general, heat stress reduced growth (shoot/root
dry weight and shoot/root length). Heat-tolerant genotypes (Raj-
4037 and PBW590) retained more shoot and root length and
dry weight than heat-sensitive genotypes (PBW502, DBW16,
DBW17, WH1021, and PBW550) (Gupta et al., 2013). In a
field experiment, heat stress (30/20◦C) reduced wheat biomass,
relative to optimum conditions (25/15◦C), but heat-tolerant
genotypes (MW-8, BW-4, and BW-3) maintained more biomass
than heat-sensitive genotypes (MW-7, MW-6, and BW-5)
(Rahman et al., 2009). Heat stress (>32/20◦C) significantly
reduced chickpea biomass by 22–30%, relative to those grown
under normal temperatures; heat stress had a smaller effect
on the biomass of heat-tolerant genotypes (ICC15614 and
ICCV92944) than heat-sensitive genotypes (ICC5912, ICC10685)
(Kaushal et al., 2013). Similarly, in a field experiment on
alfalfa (Medicago sativa), heat stress (38/35◦C) reduced plant
biomass, relative to the control (25◦C), more so in heat-
sensitive Wl712 than heat-tolerant Bara310SC (Wassie et al.,
2019). Field studies on lentil revealed that heat stress (>32/20◦C)
significantly reduced plant biomass, relative to the control (Sita
et al., 2017a); genotypes IG3263, IG2507, IG3297, IG3312,
IGG3327, IG3330, IG3546, IG3745, IG4258, and FLIP2009
retained more biomass (termed heat-tolerant) than genotypes
IG2519, IG2802, IG2506, IG2849, IG2821, IG2878, IG3326,
IG3290, IG3973, IG3964, IG4242, DPL15, DP315, IG4221, and
IG3568 (termed heat-sensitive). Likewise, heat stress (>40/28◦C)
significantly reduced mungbean biomass (up to 76%), relative
to the control (34/16◦C) in the field, due to the inhibition
of vegetative growth and acceleration in reproductive growth.

Genotypes EC693357, EC693358, EC693369, Harsha, and ML
1299 produced more biomass under heat stress (heat-tolerant)
than genotypes EC693363, EC693361, KPS1, EC693370, and
IPM02-3 (heat-sensitive) (Sharma et al., 2016). A study on
potato (Solanum tuberosum) revealed that warmer temperatures
(31/29◦C) severely affected plant biomass in two genotypes—
Norchip (heat-tolerant) and Up-to-date (heat-sensitive)—grown
in controlled environment chambers (Lafta and Lorenzen, 1995).
Both genotypes had similar total dry mass under controlled
conditions (19/17◦C), but heat stress (31/29◦C) reduced total dry
mass by up to 44% in Norchip and 72% in Up-to-date. Leaf,
stem, shoot, and tuber dry and fresh weights followed the same
trend under high temperature in both genotypes. At Niger, West
Africa (ICRISAT Sahelian Centre research farm (13◦ 29« N, 2◦
10« E; 221 m above sea level), field experiments were performed
to evaluate heat tolerance of groundnut (Arachis hypogaea L.)
using physiological traits identified in a yield model [crop growth
rate (C), reproductive duration (Dr) and partitioning (p)]. After
screening 625 diverse groundnut genotypes, under irrigation
during the hottest months (February to May), 16 contrasting
genotypes, selected on the basis of combination of high pod yield
and partitioning coefficient, revealed that crop growth rate was a
powerful factor affecting pod yield. Pod yield of most genotypes
decreased by more than 50% because of heat stress (40◦C) at the
time of flowering and pod formation. The findings showed that
estimates of p would be vital as a dependable selection criterion,
compared to yield, for identification of heat tolerant genotypes.
The breeders should explore strategies to maximize the crop
growth rate and partitioning in genotypes growing under warm
environments (Ntare et al., 2001). Under combined heat and
drought (36/26◦C without irrigation) stresses, Biomass was used
as a trait for evaluation of 3 tomato cultivars (Arvento and two
heat tolerant; LA1994 and LA2093) (Zhou et al., 2017) resulting
in identification of “Areventro” cultivar as more tolerant than
“LA1994” and “LA2093” genotypes (Zhou et al., 2017).

LEAF-BASED TRAITS

Heat stress causes serious leaf injuries, yellowing of leaves
(chlorosis), tissue death (necrosis), especially tips and margins,
wilting, and drying, resulting in severe loss of functionality
(Wahid et al., 2007). Various traits have been used to assess heat
damage, with genotypes contrasting for heat tolerance identified
based on these traits.

Tissue Damage
Tissue damage can be assessed by measuring membrane damage
based on electrolyte leakage, which is a reliable indicator of
heat sensitivity in several crop species. The primary target of
environmental stress is the cell membrane (Chen et al., 2014;
Sita et al., 2017b). Heat stress loosens chemical bonds within
the molecules of biological membranes by accelerating the
kinetic energy and movement of molecules across membranes,
which results in membrane fluidity by protein denaturation or
increased unsaturated fatty acids (Savchenko et al., 2002). Under
high temperature, protein denaturation, increased membrane
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fluidity, and enzyme inactivation decreases protein synthesis and
degradation, and alters membrane integrity (Howarth, 2005).
The tertiary and quaternary structure of membrane proteins
changes with heat stress and enhances membrane permeability,
as evident from increased ionic leakage, which is an indicator
of decreased cell membrane thermostability (CMT) (Wahid
et al., 2007). Damage to leaf membranes occurs due to the
direct effects of high temperature, photo-oxidation of chlorophyll
pigments, impaired electron flow, inhibition of carbon fixation,
and water loss from leaves. Damage to membranes impairs
photo-assimilate production in leaves (Prasad et al., 2017). Under
high temperature, the relationship between CMT and crop yield
varies from plant to plant. CMT has been used as an indirect
measure of heat stress tolerance in plant species, such as sorghum
(Sullivan, 1997; Marcum, 1998), soybean (Martineau et al., 1979),
potato and tomato (Chen et al., 1982), sorghum, wheat (Blum
et al., 2001), cotton (Ashraf et al., 1994; Cottee et al., 2010), lentil
(Sita et al., 2017a), chickpea (Kaushal et al., 2013), mungbean
(Sharma et al., 2016), and barley (Wahid and Shabbir, 2005). Abro
et al. (2015) identified several heat-tolerant cotton genotypes
with high membrane thermostability at 50◦C in the laboratory
environment, which could be used for breeding purposes to
develop heat-tolerant genotypes. During the late developmental
phase of plants, membrane stability tends to decrease (Ahmad
and Prasad, 2011). For breeding purposes, significant variations
in membrane thermostability among genotypes could be used to
improve selection (Hemantaranjan et al., 2014).

In wheat grown under high temperatures (45◦C for 2 h),
genotypes (Raj4037, PBW373) with high CMT (58.20, 55.43)
during grain filling performed better than those (Raj4083,
DBW16, PBW550) with low membrane thermostability
(48.15, 50, 51.96). Under controlled conditions, membrane
thermostability was maximum in WH1021 (64.13) and
minimum in DBW16 (51.11) (Gupta et al., 2013). Similarly,
CMT was markedly higher in heat-tolerant (56.83%) than
heat-sensitive (31.43%) wheat genotypes during grain filling.
Based on CMT, Bala and Sikder (2017) identified heat-tolerant
wheat genotypes BAW-1143, BARI Gom-25, BARI Gom-
26, and Prodip. At the seedling stage in wheat, CMT had a
positive correlation with grain yield, grain weight (Saadalla
et al., 1990), and biomass (Blum et al., 2001), indicating the
effectiveness of this trait for assessing heat tolerance. In rice at
40◦C, thermostability was closely related to crop yield potential
(Maavimani and Saraswathi, 2014). In a comparative study
of rice and maize grown under controlled high temperatures
(40/35◦C and 45/40◦C), the rice genotypes (PR116, PR118)
had greater electrolyte leakage (27.4–40.2%) than the maize
genotypes (PMH1, PMH2) (19.2–26.2%) (Kumar et al., 2012).
Similarly, among three rice cultivars, F60 and F733 were
more heat-susceptible than F473 when grown at 40◦C, with
greater electrolyte leakage (20 and 15%) (Sanchez-Reinoso
et al., 2014). Likewise, Yadav et al. (2014) used CMT as an
effective screening parameters for selecting heat tolerant
lines in Pearl millet. From the same study, the authors also
identified H77/29-2 × CVJ-2-5-3-1-3 hybrid as heat tolerance
based on seedling thermotolerance index. Under combined
stresses (drought-42–45% of irrigated conditions) and heat

(> 32/20◦C), the drought tolerant chickpea genotypes were
found to tolerate the two stresses more effectively than heat
tolerant genotypes. For instance, genotypes ICC1356 (drought-
tolerant) showed less damage to membranes than genotype
ICC3776 (drought-sensitive), when subjected to both the stresses
(Awasthi et al., 2017).

In legumes, a few studies have identified heat-tolerant
and heat-sensitive genotypes. Based on the membrane
stability test, chickpea was most sensitive to heat stress,
relative to other legumes such as pigeon pea, groundnut, and
soybean (Devasirvatham et al., 2012). Contrasting chickpea
genotypes exposed to high temperatures (40/30◦C and 45/35◦C)
varied markedly, with heat-tolerant genotypes (ICCV07110,
ICCV92944) showing less membrane damage (22.6, 20.6%)
than heat-sensitive genotypes (ICC14183, ICC5912) (30.4,
33.3%) (Kumar et al., 2013). A similar test conducted at
37/27◦C reported up to 25% electrolyte leakage in chickpea
seedlings (Pareek et al., 2019). A heat-tolerant genotype
(ICC1205) had low electrolyte leakage (13–14%), indicating
better cell membrane integrity. Screening of cowpea genotypes
exposed to heat stress also revealed less leaf electrolyte leakage
(35.8–36.7%) in heat-tolerant genotypes (H36, H8-9, DLS99)
during flowering and pod set than heat-susceptible genotypes
(CB5, CB3, DLS127) (66.2–79%) (Ismail and Hall, 1999). In
lentil, heat tolerance was related to less membrane damage
(<20%) in heat-tolerant genotypes (IG2507, IG3263, IG3745,
IG4258, and FLIP2009) than heat-sensitive genotypes (IG2821,
IG2849, IG4242, IG3973, IG3964) (> 30%) at 38/28◦C and
40/30◦C in a controlled environment (Sita et al., 2017a). In
another study, lentil genotypes (Ranjan, Moitree, 14-4-1,
IC201710, and IC208329) were reported as heat-tolerant based
on cell membrane stability under field and growth chamber
studies at 34◦C (Choudhury et al., 2012). Barghi et al. (2013)
reported the highest CMT in genotype Qazvin (98.13%)
and regarded it as heat-tolerant, whereas genotype B4400
(33.19%) had the lowest CMT (heat-sensitive). Under high
temperature (38/35◦C), screening of 15 Medicago cultivars
for CMT identified Bara310SC and WL712 as heat-tolerant
(24.07%) and heat-sensitive (53.2%) cultivars, respectively,
having minimum and maximum electrolyte leakage, respectively
(Wassie et al., 2019).

Cotton displays heat sensitivity at various growth stages.
Cotton genotypes grown in a controlled environment under
optimal conditions (35/21 ± 2◦C) for 30 days and then exposed
to high temperature (46/30 ± 2◦C) at the reproductive stage, by
gradually increasing temperature by 2◦C per day, were screened
for CMT—cultivars FH-900, MNH-552, CRIS-19, and Karishma
emerged as relatively heat-tolerant (thermostable) and FH-634,
CIM-448, HR109-RT, and CIM-443 as heat-susceptible (Rahman
et al., 2004). In a similar study at > 32◦C, cotton genotypes
B557 and NIAB-78 showed minimum electrolyte leakage (<40%)
and were regarded as tolerant compared to genotypes MNH-
554, FH682 and FH900 which showed maximum electrolyte
leakage (>50%) (Rana et al., 2011). Abro et al. (2015) reported
cotton varieties NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30,
NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-
2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, and
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NIAB-111 and check variety Sadori as heat-tolerant using CMT
as a screening parameter in both heat-stressed (44◦C) and
non-stressed (32◦C) temperature regimes. Other similar studies
where cotton genotypes were differentiated by CMT into heat-
tolerant and heat-sensitive were conducted by Karademir et al.
(2012); 15 genotypes; > 40◦C) and Singh K. et al. (2018); 37
genotypes; > 40◦C).

Likewise, in cucumber, contrasting genotypes were identified
based on membrane stability under heat stress (40/32◦C)—L3466
and Desi cucumber as heat-tolerant and Suyo Long and Poinsett
as heat-sensitive (Ali et al., 2019). In tomato, 2 h exposure to high
temperature (45◦C) altered CMT more in heat-sensitive variety
Campbell-28 (> 45%) than heat-tolerant variety Nagcarlang
(<20%) (Camejo et al., 2005). In another study on 44 tomato
lines, exposure to 44◦C for 4 h after 1 week of vegetative stage
increased electrolyte leakage in heat-sensitive genotypes (32.92
µmhos/cm) more than heat-tolerant genotypes (22.2 µmhos/cm)
(Hameed et al., 2015). Similar studies have screened tomato
genotypes for heat tolerance using membrane thermostability
(Sangu et al., 2015; Alsamir et al., 2017). Thus, CMT is an effective
trait for identifying stable and heat-tolerant genotypes.

Canopy Temperature Depression
At the whole crop level, leaf temperatures decrease below
air temperature when water evaporates. Canopy temperature
depression (CTD)—the difference between air temperature (Ta)
and canopy temperature (Tc)—acts as an indirect measure of
transpiration (Reynolds et al., 2001) and plant water status (Araus
et al., 2003). A positive CTD value is observed when the canopy
is cooler than the air (CTD = Ta–Tc) (Balota et al., 2008). CTD
is a heritable trait that can be measured on cloudless days with
an infrared thermometer (Reynolds et al., 1998). Plants transpire
through open stomata to maintain canopy temperature in a
metabolically comfortable range. Under stress, plants close their
stomata for some period, which increases the canopy temperature
(Kashiwagi et al., 2008). Canopy temperature is affected by soil
water status, wind, evapotranspiration, cloudiness, conduction
systems, plant metabolism, air temperature, relative humidity,
and continuous radiation (Reynolds et al., 2001). To assess heat
tolerance, many traits can be used as selection criteria, but,
CTD is considered to be best as a single reading integrates
scores of leaves (Reynolds et al., 1994, 1998; Fischer et al.,
1998). Yield potential and the metabolic fitness of crop plants
under specific environmental conditions are determined by
CTD (Kumari et al., 2013). A study on barley revealed a
strong link between epicuticular leaf wax QTL and CTD, and
that wax load influences plant canopy temperature (Awika
et al., 2017). Based on phenotypic variation, CTD can act
as a desirable criterion for heat-tolerant genotype selection
(Mason and Singh, 2014). CTD is a mechanism of heat escape
and has a strong genetic correlation with yield (Reynolds
et al., 2001). Heat-tolerant genotypes of wheat had higher CTD
than heat-sensitive genotypes, indicating their greater ability to
maintain a cooler canopy environment (Gare et al., 2018). In
another study, the CTD value in wheat was correlated with
heat resilience (Pradhan et al., 2012). In 102 durum wheat
genotypes tested under late-sown conditions, CTD had a strong

positive correlation with days to maturity (Gautam et al., 2015),
confirming that CTD is an effective selection criterion in plant
breeding (Seema et al., 2014). Leaf area having more greenness
and CTD are strongly interrelated in wheat and with grain yield,
grain-filling duration, and biomass (Kumari et al., 2013). Stay-
green genotypes have high CTD values due to transpirational
cooling, resulting in lower canopy temperatures (Reynolds et al.,
1994; Fischer et al., 1998). In stay-green lines, low CTD values
delayed senescence (Kumari et al., 2013). Leaf width in wheat
had a high correlation with canopy temperature under heat
stress (Mohammadi et al., 2012). In durum wheat, CTD had a
positive correlation with biological yield and spike number/m2

at first spikelet emergence and 50% inflorescence stages. At
three growth stages (first spikelet emergence, 50% inflorescence,
and completion of anthesis), harvest index had a negative
correlation with CTD (Bahar et al., 2008). Screening of Indian
and CIMMYT wheat germplasm for the stay-green trait and
CTD revealed higher CTD values in the stay-green genotypes
due to transpirational cooling and lower canopy temperatures
(Kumari et al., 2013). In wheat (Triticum aestivum), heat stress
reduced CTD by 39.7% at the grain-filling stage (Joshi et al.,
2016). Timely sown wheat had higher CTD than late-sown wheat
(Saxena et al., 2016), with genotypes HD2932, HD2864, HD3095,
HI8703, and HUW234 identified as heat-tolerant due to their
higher net photosynthesis, relative water content, membrane
stability index and CTD than the other tested genotypes (Saxena
et al., 2016). Additional management factors, such as the use
of farmyard manure and NPK, improved physiological traits
(light interception, CTD, and flag leaf chlorophyll content) in
wheat (Badaruddin et al., 1999). In seven rice varieties, CTD was
closely related to stomatal conductance and leaf photosynthetic
rate (Takai et al., 2010). Rice varieties Takanari and TUAT1-5-
6a had lower leaf temperatures and higher stomatal conductance
and leaf photosynthetic rates than the other varieties tested under
cloudy conditions. Infrared thermography, as a simple method
of evaluating varietal differences in stomatal conductance via
CTD, is feasible even under cloudy conditions. In chickpea,
water potential, osmotic pressure, relative leaf water content,
and seed yield had a negative correlation with CTD (Sharma
D. K. et al., 2015). Heat-tolerant chickpea genotypes ICCVs
95311, 98902, 07109, and 92944 had higher CTD than sensitive
genotypes ICCVs 07116, 07117, and 14592, which had negative
CTD values (Devasirvatham et al., 2015). In mungbean, CTD
had a significant positive correlation with seed yield, and a
negative correlation with root traits, such as lateral branch
number and dry root weight (Raina et al., 2019). Greater
pod number and pod to node ratio was associated with CTD
in pea (Tafesse et al., 2019). In cotton, the involvement of
CTD in heat tolerance was indicated (Cornish et al., 1991),
with additive, dominance, and epistatic components involved
in its inheritance (Khan et al., 2014). In another study on
cotton, crop development stage had no effect on CTD, which
was significantly correlated with seed yield (Karademir et al.,
2018). Canopy temperature in cotton increased under combined
heat and drought stress treatment (>36◦C and 35% irrigation)
(Carmo-Silva et al., 2012), as compared to control. Low canopy
temperature was noticed in cotton cultivar Pima S-6 (S6),

Frontiers in Plant Science | www.frontiersin.org 7 October 2020 | Volume 11 | Article 587264

48

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-587264 October 16, 2020 Time: 22:22 # 8

Chaudhary et al. Heat Tolerance in Crops

which was reported as tolerant, unlike high canopy temperature
in Monseratt Sea Island (MS), termed as sensitive, under
combined stress.

Stomatal Conductance
Under heat stress, regulating the transpirational mechanisms is
a possible strategy for selecting heat-tolerant varieties (Condon
et al., 2007). As leaves open their stomata, the rate of gaseous
exchange may create differences in stomatal behavior that can
be recorded by a leaf porometer (Chandra et al., 2017; Priya
et al., 2018). Fully opened stomata increase the diffusion of CO2
and, at the same time, increase transpiration and photosynthetic
efficiency in wheat (Condon et al., 2007). Consequently, stomatal
regulation is an important factor that governs plant growth and
survival. Therefore, stomatal conductance (gS) is a useful trait
for determining photosynthetic and transpiration rates. Stomatal
conductance increases with rising temperature (Urban et al.,
2017). Crawford et al. (2012) suggested that plants acclimatize to
high temperatures by evaporating more water, thereby keeping
their canopies cool despite the presence of fewer stomata.
Similarly, semi-dwarf spring wheat cultivars had strong positive
correlations between gS and photosynthetic rate, cooler canopies
and yield (Fischer et al., 1998). Heat-tolerant advanced cotton
lines (e.g., Pima S-6) developed by Cornish et al. (1991) had
higher stomatal conductance and photosynthetic rates under heat
stress, which was possibly due to cooling effect of plants through
stomata. The stomatal conductance of 50 cotton genotypes was
measured under high temperature (45–50◦C/20–30◦C day/night)
in a glasshouse, and identified five heat-tolerant genotypes
(NIAB-111/2, BH-160, MNH-554, N-313, BH-163, Mutant-94)
(Khan et al., 2008). Similarly, 41 wheat lines of different origin
were screened for higher gS, which was associated with heat
tolerance (36/30◦C for 1 week) (Sharma K. D. et al., 2015). Heat-
tolerant genotypes with high gS also had higher photosynthetic
efficiency under severe heat stress; therefore, this trait acts as
a useful genetic tool for developing heat tolerance. Stomatal
conductance increased in heat-stressed tomato plants, relative
to control conditions (Camejo et al., 2005). In another study,
heat-tolerant tomato genotypes maintained higher stomatal
conductance under stressed conditions (36/28◦C), relative to the
control (26/18◦C). Further, heat stress severely affected stomatal
anatomy and stomatal number in heat-sensitive genotypes,
relative to heat-tolerant genotypes (Zhou et al., 2015).

Multiple screening parameters, including stomatal
conductance, were used to screen 15 common bean genotypes
for heat tolerance in a greenhouse chamber (Traub et al., 2018).
Five genotypes—SB761, SB776, SB781, Jaguar, and TB1—were
screened at three temperature regimes (35/30, 40/35, 45/40◦C).
Stomatal conductance increased with increasing temperature
until 40/35◦C—after which, it declined—genotype TB1 had
the highest values for stomatal conductance. In mungbean
genotypes, gS increased up to 40/30◦C but declined significantly
under heat stress at 43/30◦C and 45/32◦C, contributing to a
rise in leaf temperature (Kaur et al., 2015). In another study on
mungbean, gS was used to differentiate between heat-tolerant
and heat-sensitive genotypes (Sharma et al., 2016). Using a
similar approach, Sita et al. (2017a) identified heat-tolerant lentil

genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009)
on the basis of stomatal conductance, with gS increasing with
increasing temperature up to 38/28◦C in heat-tolerant genotypes.
Heat-tolerant genotypes also had higher gS values under late-
sown than normal-sown conditions; in contrast, heat-sensitive
genotypes were unable to maintain higher gS under heat stress. In
chickpea, heat-tolerant (ICC1356, ICC15614) and heat-sensitive
genotypes (ICC4567, ICC5912) genotypes were selected on
the basis of leaf and seed traits (Awasthi et al., 2014)—heat-
tolerant genotypes maintained higher stomatal conductance and
photosynthetic function than heat-sensitive genotypes under
similar conditions and produced more seed yield. Evaluation of
three varieties of tomato (Nagcarlang, Hybrid 61 and Moskvich)
against combined heat and drought stresses (25–45◦C; 20%
irrigation; 2 days), revealed that genotype Hybrid 61 performed
better by maintaining higher stomatal conductance and having
lower leaf temperature than other two varieties (Nankishore
and Farrell, 2016), suggesting this trait to be useful even under
stress combinations.

Carbon Isotope Discrimination
(CID,113C)
Carbon isotope discrimination has become an important tool
for interpreting photosynthetic rate and water use efficiency
(WUE) in plant species (Sheshshayee et al., 2003; Bindumadhava
et al., 2011). 12C (98.89%) and 13C (1.11%) are the two stable
carbon isotopes (non-radioactive) in the global carbon pool.
Small but significant amount of 13C (heavy isotope) incorporated
in the organic and inorganic matter during CO2 fixation by
carboxylating enzymes. These small differences in 13C abundance
are expressed as Carbon isotope ratio and analyzed with
isotope ratio mass spectrometer (IRMS) (Farquhar et al., 1989).
Composition of carbon isotopes in plant tissue samples show
photosynthetic ability governed by RuBisCO in mesophyll tissues
(Bindumadhava et al., 2005, 2011, Impa et al., 2005). Lower
values of CID represent lower stomatal conductance (limited
diffusion of CO2) and vice versa (Bindumadhava et al., 2011).
Further, under high temperature, leaf water status declines due
to reduced root hydraulic conductivity, resulting in stomatal
closure (Hairat and Khurana, 2016). Therefore, lower CID
values at high temperature can be ascribed to indicate declined
root absorption and stomatal closure. In barley, carbon-13
discrimination is a useful indicator of high yield (Craufurd et al.,
1999), and could be a sound screening parameter for identifying
heat-tolerant genotypes. Heat-tolerant (C306, K7903) and heat-
sensitive (HD2329) wheat genotypes were identified from CID
values and other physiological traits. The heat-tolerant genotypes
had higher mean CID values at high temperature (42◦C) than the
heat-sensitive genotypes. This study demonstrated that the heat-
tolerant genotype maintained stomatal opening by accumulating
osmolytes, such as proline, to maintain osmotic pressure for
water absorption (Hairat and Khurana, 2016).

Photosynthetic Pigments
Heat stress negatively affects photosynthesis by decreasing leaf
pigment content and damaging leaf ultrastructure. Chloroplasts

Frontiers in Plant Science | www.frontiersin.org 8 October 2020 | Volume 11 | Article 587264

49

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-587264 October 16, 2020 Time: 22:22 # 9

Chaudhary et al. Heat Tolerance in Crops

play a vital role in photosynthesis as one of the most heat-
sensitive organelles (Krause and Santarius, 1975; Ogweno et al.,
2008; Abdelmageed and Gruda, 2009). Decreases in total
chlorophyll content and changes in the chlorophyll a/b ratio
have been correlated with reductions in photosynthesis during
heat stress, due to reduced “antenna (pigment units)” size and
thus reduced light-harvesting (Blum, 1986; Harding et al., 1990;
Shanmugam et al., 2013). The stay-green (SGR) trait, or delayed
leaf senescence, is a crucial trait that allows plants to retain
leaves in an active photosynthetic state under high temperature
to maintain the assimilation process and increase crop yield
(Gregersen et al., 2013; Kumari et al., 2013). Stay-green rice
genotypes exhibited high photosynthetic activities under heat
stress, resulting in high yields (Jagadish et al., 2015).

Chlorophyll content is an integrative trait that is correlated
with stomatal conductance, photosynthetic rate, and
transpiration (Del Blanco et al., 2000; Netto et al., 2005),
and considered a good criterion for screening for heat-
stress tolerance. In the current era of global climate change,
introduction of the SGR trait is vital for developing heat-
resistant cultivars (Kumari et al., 2013). The SGR trait has
been linked to increased yield production in many crops under
heat stress, including wheat, barley, rice, maize, and cowpea
(Kumari et al., 2007; Borrell et al., 2014; Kobata et al., 2015;
Gous et al., 2016; Abdelrahman et al., 2017). The stay-green
trait has helped to identify heat-tolerant wheat cultivars that
maintain yields at high temperatures (Vijayalakshmi et al.,
2010). A significant correlation was detected between heat
tolerance and the stay-green trait in 936 elite wheat genotypes
(Kumari et al., 2007), suggesting that delayed senescence
is an essential selection criterion for heat adaptability. The
stay-green characteristic of wheat cultivar Mairaj-2008 was
correlated with higher grain yield under heat stress than other
lines that lacked the stay-green trait (Nawaz et al., 2013).
Genotypes with delayed leaf senescence or stay-green traits
have been associated with thermotolerance, due to the longer
grain-filling period and thus higher yields, relative to genotypes
lacking these traits (Reynolds et al., 1997; Vijayalakshmi et al.,
2010). Delayed leaf senescence enhances the transpiration use
efficiency, resulting in higher yields. Thus, the stay-green trait is
beneficial for retaining active photosynthesis under heat stress
(Bavei et al., 2011).

The stay-green trait was used to identify three
promising heat-tolerant wheat genotypes [CB-
367 (BB#2/PT//CC/INIA/3/ALD“S”), CB-333 (WL
711/3/KAL/BB//ALD “S”), and CB-335 (WL711/CROW
“S”//ALD#1/CMH 77A] based on maximum grain development
and survival under heat stress (32◦C for 4 weeks) (Rehman et al.,
2009). Two recombinant inbred lines (RILs) of wheat, SB062
and SB003, were exposed to 7-day heat shocks (32.7/21.6◦C
day/night) in a growth chamber during the vegetative or
reproductive stage. SB062 maintained leaf greenness for
longer than SB003 under heat stress and identified as heat-
tolerant; in addition, delayed leaf senescence appeared to
play a role in maintaining grain size in SB062 under heat
stress (Ullah and Chenu, 2019). Lu et al. (1997) suggested
that higher stomatal conductance and photosynthetic rate are
functionally important for higher heat tolerance and yields.

A high temperature (38/28◦C) treatment for 6 days under
controlled conditions in a greenhouse modified chlorophyll
content in two contrasting maize genotypes; DTPYC9F119
maintained higher leaf chlorophyll content (identified as heat-
stress tolerant) than K64R (identified as heat-stress susceptible)
(Debnath et al., 2016; Singh et al., 2020). In another study,
12 barley genotypes were exposed to heat stress (> 40◦C) for
107–119 days in the field—genotypes L3, L6, L8, and L10 had
longer stay-green duration and higher yields under heat stress
than the other genotypes. Fifteen cotton genotypes were screened
for thermotolerance (40◦C) in the field—genotypes AGC375
and AGC208 were identified as heat-tolerant based on their
chlorophyll content (Karademir et al., 2012). In a similar study,
cotton genotype Sicot 53 had higher thermotolerance than Sicala
45 (Cottee et al., 2007). In rice, cultivar N44 was identified as
heat-tolerant (exposed to 38◦C for 25 days in the field during the
reproductive stage), with its higher chlorophyll content under
heat stress than N-22 (Bahuguna et al., 2015).

Chlorophyll content was used to screen for heat tolerance
in several lentil genotypes after exposure to heat stress
(>32/20◦C) in a growth chamber at the vegetative and
reproductive stage. Heat-tolerant genotypes IG3263 and IG2507
had more chlorophyll than heat-sensitive genotypes IG4242
and IG3964, which was positively correlated with yield (Sita
et al., 2017a). In chickpea, genotypes were selected for heat
tolerance based on the SGR trait; plants were exposed to gradual
increasing temperatures (2◦C per day) from 27/18◦C to 42/25◦C
day/night for 8 days in a growth chamber; at which time,
genotype ICC16374 (heat-sensitive) had lower leaf chlorophyll
content than JG14 (heat-tolerant) (Parankusam et al., 2017).
Likewise, Kaushal et al. (2013) identified two heat-tolerant
(ICC15614, ICCV92944) and two heat-sensitive (ICC10685,
ICC5912) chickpea genotypes based on chlorophyll content,
after exposure to heat stress (>32◦C/20◦C) in the field during
reproductive development. The stay-green trait could be used
as a morphological indicator for thermotolerance in tomato, as
in wheat (Sharma D. K. et al., 2015; Zhou et al., 2015). The
stay-green trait contributes to high yield in tomato exposed
to heat stress (Zhou et al., 2015). Tomato’s ability to stay-
green and maintain photosynthesis during heat stress at different
developmental stages, especially anthesis, could be vital for
reproductive growth and yield (Zhou et al., 2017). Heat-sensitive
tomato genotypes do not stay-green under heat stress due to
the decline in chlorophyll and carotenoid contents, and show
early chlorosis and withered leaves (Vijayalakshmi et al., 2010;
Zhou et al., 2015).

Chlorophyll Fluorescence
Chlorophyll fluorescence (Fv/Fm ratio) is a relatively sensitive
indicator of direct or indirect effects of abiotic stress on
photosynthesis (Schreiber and Bilger, 1993). The relationships
between primary photosynthetic reactions and chlorophyll
fluorescence are crucial as they provide information on the plant’s
photosynthetic capability and its acclimation capacity under
stressful environmental conditions (Lichtenthaler, 1987; Kalaji
et al., 2018). Of the photosynthetic apparatus, photosystem II
(PSII) is the most heat-labile cell structure (Vacha et al., 2007).
As damage to PSII is often the first response when plants are
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subjected to heat stress, PSII response studies can reveal the
primary effects of heat stress on plants (Mathur et al., 2011;
Van der Tol et al., 2014); measuring chlorophyll a fluorescence
is an effective and non-invasive technique to identify damage
to PSII efficiency (Baker and Rosenqvist, 2004; Baker, 2008).
The ratio between variable fluorescence (Fv) and maximum
fluorescence (Fm), or Fv/Fm, reflects the maximum quantum
efficiency of PSII (Butler, 1978), and is one of the most heat-
affected fluorescence parameters. A decline in Fv/Fm is frequently
observed when plants are subjected to abiotic stress, including
heat (Willits and Peet, 2001; Molina-Bravo et al., 2011; Sharma
et al., 2012). There is a negative linear correlation between
Fv/Fm and the maximum quantum yield of photosynthesis, when
measured as O2 evolution (Demmig and Björkman, 1987; Kao
and Forseth, 1992) and CO2 fixation (Ogren and Sjostrom, 1990).
Screening methodologies using chlorophyll fluorescence to detect
and quantify damage in photosystem II (PSII) and thylakoid
membranes in response to temperature stress have been used in
several cereal crops, including barley (Rizza et al., 2011), wheat
(Balouchi, 2010), maize (Sinsawat et al., 2004), legume crops
[chickpea, groundnut, pigeon pea (Cajnus cajan), and soybean]
(Srinivasan et al., 1996; Herzog and Chai-Arree, 2012), and
horticultural crops, including strawberry (Fragaria ananassa)
(Ledesma et al., 2004; Kadir et al., 2006), tomato (Willits and
Peet, 2001), grapes (Vitis vinifera) (Kadir et al., 2007), and various
tropical and subtropical fruits (Yamada et al., 1996; Weng and
Lai, 2005). Therefore, chlorophyll fluorescence is a promising tool
for detecting stress-induced injuries and thermotolerance (Méthy
et al., 1994) but its successful implementation in crop breeding
programs requires careful selection of suitable fluorescence
parameters (Malaspina et al., 2014).

Heat-tolerant wheat lines with tolerance to high temperatures
during grain filling had greater Fv/Fm ratios than heat-sensitive
lines in warmer irrigated environments, which were linked to
higher grain yield (Shefazadeh et al., 2012). The physiological
state of thylakoid membranes, as determined by chlorophyll a
fluorescence, identified heat-tolerant wheat cultivars with high
chlorophyll fluorescence (Ristic et al., 2007). Various wheat lines
were exposed to heat stress for 3 days at 40◦C in controlled
conditions; the lines having high chlorophyll fluorescence (Fv/Fm
0.836)—830, 1313, 1039, 1223—were less sensitive to heat in
terms of growth and photosynthesis than the other lines, and
were identified as heat-tolerant (Sharma et al., 2014). Similarly,
genotypic variation for chlorophyll fluorescence parameters
exists in rice under heat stress (29◦C for 25 days at anthesis) in
a growth chamber; N22 genotype maintained high Fv/Fm (0.75)
under heat stress, and was identified as heat-tolerant, relative to
the low Fv/Fm (0.70) in Vandana (Sailaja et al., 2015). Modified
chlorophyll fluorescence imaging was used to screen 20 wild
barley (Hordeum spontaneum) genotypes exposed to heat stress
(45◦C, 1 h) in growth chambers, and identified HOR10478 as
the most heat-sensitive and HOR12818 as the most heat-tolerant
genotypes (Jedmowski and Brüggemann, 2015). Oukarroum et al.
(2016) also differentiated heat tolerance in 10 varieties of barley.
After 2 weeks of growth, detached leaves were exposed to a short-
term heat treatment at 45◦C for 10 min in a growth chamber,
which decreased chlorophyll fluorescence; notably, varieties Ig,

Im, and Tz had high chlorophyll fluorescence (heat-tolerant) and
Ma, Ra and Igr had low chlorophyll fluorescence (heat-sensitive).

In many legumes, chlorophyll fluorescence has been used
to identify genotypes that tolerate heat stress. In lentil,
photosynthetic efficiency was measured as PSII function (Fv/Fm
ratio) in a natural environment by exposing plants to heat
stress (above 32/20◦C) during the reproductive stage. Heat-
tolerant genotypes—IG2507, IG3263, IG3297, IG3312, IG3327,
IG3546, IG3330, IG3745, IG4258, and FLIP2009—maintained
high chlorophyll fluorescence (Fv/Fm 0.71) under heat stress,
relative to heat-sensitive genotypes—IG2821, IG2849, IG4242,
IG3973, IG3964—which had the lowest Fv/Fm values (0.58) (Sita
et al., 2017a). Nine common bean lines were measured for
changes in chlorophyll fluorescence under heat stress at flowering
(2 h at 45◦C) in a greenhouse; thermotolerant lines 83201007
and RRR46 had higher Fv/Fm values under heat stress than the
heat-sensitive line Secuntsa (Petkova et al., 2009). In another
study, 12 varieties and lines of common bean were exposed to
42◦C in the field during the reproductive period; two genotypes
(Ranit and Nerine) maintained Fv/Fm values at 42◦C, relative
to the controls at 26◦C, and were considered heat-tolerant.
These two genotypes also showed good productivity and quality
and can be used as parental lines in bean breeding programs
(Petkova et al., 2007). Likewise, 41 mungbean lines were grown
outdoors and exposed to high temperatures (>40/28◦C) during
the reproductive stage; several promising heat-tolerant lines
(EC693358, EC693357, EC693369, Harsha, and ML1299) were
identified, with high Fv/Fm ratios (0.73–0.75 units) compared to
sensitive lines (0.61–0.67 units), which would not only serve as
useful donor/s for breeding programs, but also as suitable base
plant source to gain insight into heat-stress-induced effects in
cell metabolism (Sharma et al., 2016). In chickpea, heat stress
(>30◦C) in the field during the reproductive stage reduced Fv/Fm
more (0.48, 0.41) in two heat-sensitive genotypes ICC10685 and
ICC5912, than in two heat-tolerant genotypes ICC15614 and
ICCV92944 (0.64, 0.60) (Kaushal et al., 2013; Awasthi et al.,
2014). A field experiment conducted in two winter seasons at
three locations with known differences in temperature in NE
South Africa, involving four chickpea genotypes, showed. that
two genotypes, which were tolerant to heat stress had chlorophyll
fluorescence (Fv/Fm) of 0.83–0.85 at the warmer site, while the
two sensitive genotypes showed lower Fv/Fm of 0.78–0.80; these
values correlated positively with grain yield. The two tolerant
genotypes had higher photosynthetic rates, starch, sucrose and
grain yield than the sensitive genotypes at the warmer site.
The observation revealed that chlorophyll fluorescence and leaf
carbohydrates are suitable tools for selection of heat tolerant
chickpea genotypes under field conditions (Makonya et al., 2019).
Screening of 15 alfalfa (Medicago sativa L.) genotypes by exposing
seedlings to 38/35◦C day/night for 7 days in a growth chamber
identified Bara310SC (Fv/Fm 0.79) and WL712 (Fv/Fm < 0.79)
as heat-tolerant and heat-sensitive cultivars, respectively (Wassie
et al., 2019), showing that Fv/Fm is an effective tool for
phenotyping contrasting genotypes for heat tolerance.

The heat susceptibilities of 67 tomato genotypes were
evaluated in a climate chamber—the genotypes with higher
Fv/Fm under heat stress (36/28◦C for 4 days or 40◦C for 7 h),
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maintained their physiological status, relative to genotypes with
lower Fv/Fm (Zhou et al., 2015). The two genotypes with the
highest Fv/Fm ratios (heat-tolerant group; T1, T2; 0.82, 0.80 units)
and two with the lowest Fv/Fm ratios (heat-sensitive group; S1
and S2; 0.74, 0.77 units) were selected for further study (Zhou
et al., 2015). Another study screened wild genotypes and cultivars
of tomato in a growth chamber at 33◦C—wild tomato varieties
Pe and Pr1 had the highest temperature stress tolerance with
high Fv/Fm ratios (0.56, 0.58), while the cultivated species were
more sensitive to temperature stress with lower Fv/Fm ratios
(0. 28, 0.38) (Zhou et al., 2018).

Chlorophyll fluorescence was used to screen cotton
landraces—6-week-old cotton plants were subjected to heat
stress at 45◦C in a growth chamber to determine thermotolerance
in terms of photosynthetic ability, independent of agronomic
yield and productivity. Three genotypes (TX2287, TX2285,
and TX761) maintained high photosynthetic efficiency (Fv/Fm
0.57), relative to sensitive genotype (Fv/Fm 0.46) (Wu et al.,
2014). In another growth chamber study, a commercial set
of eight cotton genotypes was screened for heat tolerance by
subjecting to heat stress (>35◦C); four genotypes (SG215BR,
ST474, and DP444BG/RR) had relatively high Fv/Fm indicating
that they suffered less from stress, while Sphinx and Acala Riata
had low Fv/Fm, indicating temperature sensitivity (Bibi et al.,
2004). In a related study, screening of 15 cotton genotypes
for thermotolerance (40◦C) in the field identified genotypes
AGC375 and AGC208 as heat-tolerant, based on their superior
chlorophyll fluorescence (Karademir et al., 2012). Imposing
combined drought and heat stress significantly affected
the photosynthetic efficiency of chickpea (Cicer arietinum)
genotypes, in a study conducted in outdoor conditions at two
different sowing times [November (<32–20◦C at the time of
reproductive stage; control) and in February (>32–20◦C at
the time of reproductive stage; heat stress during pod filling)],
while drought was applied during both sowing times during pod
filling (at ∼75% podding) by withholding water until maturity.
The photosynthetic efficiency (Fv/Fm) of the leaves decreased
more in plants subjected to drought stress (54–74%) than to
heat stress alone (9–46%) and the combined heat + drought
stress treatment showed the greatest reduction in photosynthetic
efficiency (68–83%), with the smallest reduction occurring in the
drought-tolerant genotype (ICC8950), compared to drought-and
heat sensitive genotypes (Awasthi et al., 2017).

Photosynthetic Rate
Heat stress affects plant characteristics such as the stay-green
trait, chlorophyll content, and chlorophyll fluorescence, which
influences the photosynthetic rate (Sharkey, 2005). Hence,
photosynthetic rate can be used as a screening parameter for the
selection of heat-tolerant genotypes. Variation in photosynthetic
rate among plant species in response to heat stress has
been well-documented. For example, a heat-shock treatment
(45◦C for 2 h at the fourth true leaf stage) reduced the net
photosynthetic rate (Pn) of two tomato cultivars, more so
in Campbell-28 (heat-sensitive) than wild Nagcarlang (heat-
tolerant) (Camejo et al., 2005). High temperature deactivates
RuBisCo, which could be involved in reducing photosynthetic

rate (Sharkey, 2005). Another study on tomato compared the Pn
of one cultivated (Ly from Solanum lycopersicum) and six wild
(Ha from S. habrochaites, Pe from S. pennellii, Pi1 and Pi2 from
S. pimpinellifolium, Pr1 and Pr2 from S. peruvianum) genotypes
grown at high temperature (33◦C) in a growth chamber—Ly,
Ha, Pi1, and Pi2 had lower Pn than the control, while Pe,
Pr1, and Pr2 showed higher Pn indicating their heat tolerance
(Zhou et al., 2018). Plants of the tomato cultivar “Liaoyuanduoli”
grown in greenhouse exposed to heat stress (35◦C after 15
DAS led to a significant change in photosynthetic apparatus as
damage of chloroplast membrane and at the same time, the
thylakoids loosely distributed with lesser grana, thus, changed
chloroplast ultrastructure might have declined the Pn (Zhang
et al., 2014). In rice, heat tolerant genotype (N22) could maintain
photosynthetic activity for a longer time after anthesis and thus
could produce higher grain weights, compared to heat-sensitive
genotypes (IR20, IR53, IR46) (Gesch et al., 2003).

Soybean cultivars (IA3023 and KS4694) and PI lines
(PI393540 and PI588026A) expressed heat tolerance and
susceptibility with high and low Pn, respectively (Djanaguiraman
et al., 2019). The soybean cultivars had less thylakoid membrane
damage than the PI lines. In an earlier study on soybean
genotype K03−2897, high-temperature stress (38/28◦C) for 14
days at the flowering stage significantly decreased leaf Pn,
due to anatomical and structural changes (increased thickness
of palisade and spongy layers and lower epidermis) in cells
and cell organelles, particularly damage to chloroplasts and
mitochondria (Djanaguiraman and Prasad, 2010). Two heat-
tolerant chickpea genotypes (Acc#RR-3, Acc#7) had higher
Pn than two heat-sensitive genotypes (Acc#2, Acc#8) at high
temperature (35/30◦C), which may have been due to increased
RuBisCo activity (Makonya et al., 2019). In another chickpea
study, 56 genotypes were exposed to high temperatures in the
field from the flowering stage to crop maturity (maximum
temperatures 25–40◦C)—the tolerant genotypes (PUSA1103,
PUSA1003, KWR108, BGM408, BG240, PG95333, JG14, BG)
had higher Pn than the sensitive genotypes (ICC1882, PUSA372,
PUSA2024) (Kumar et al., 2017). Similarly, the response of
four chickpea genotypes to a natural temperature gradient in
the field at the flowering stage identified two heat-tolerant
genotypes (Acc#RR-3, Acc#7) with high Pn and two heat-
sensitive genotypes (Acc#2, Acc#8) with lower Pn; these results
were validated in a climate chamber experiment set at 30/25◦C
and 35/30◦C (Makonya et al., 2019). Improvement of heat
stress tolerance by stabilizing PSII system through introducing
IbOr gene in transgenic potato (Goo et al., 2015), sweet potato
(Kang et al., 2017), and in alfalfa (Wang et al., 2015) is worth
mentioning. Heat, drought and their combination limited the
Photosynthetic rate of lentil (Lens culinaris Medikus), particularly
during reproductive growth and seed filling. In recent study eight
lentil genotypes two drought-tolerant (DT; DPL53 and JL1), two
drought-sensitive (DS; ILL 2150 and ILL 4345), two heat-tolerant
(HT; 1G 2507 and 1G 4258) and two heat-sensitive (HS; 1G
3973 and 1G 3964) sown at the normal time (November), at the
time of seed filling (30/20◦C), or sown late (February) to impose
heat stress (> 30/20◦C (day/night) and drought maintained
by water withheld (50% of field capacity) from the start of
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seed filling to maturity. The photosynthetic rate (Pn) decreased
significantly more under drought stress (33.4–56.6%) than heat
stress (13.3–43%), as compared to the control plants. Under the
combined stress, Pn declined more (57–82% reduction), less so
in the heat and drought tolerant genotypes compared to sensitive
(Sehgal et al., 2017).

Sucrose
Leaf photosynthates are largely transported to sink organs
in the form of sucrose, and sucrose synthase (SS) is a key
enzyme for sucrose to enter a variety of metabolic pathways
(Lu et al., 2005). Down-regulation of SS indirectly inhibits
carbohydrate production, eventually reducing yield and quality.
Maintaining sucrose levels is vital during stressed conditions,
which depend on its synthesis and hydrolysis. Heat-stressed
plants had significant reductions in the activity of key enzymes—
sucrose phosphate synthase (SPS) and SS—involved in sucrose
synthesis. The availability of sucrose to reproductive organs is
crucial for sustaining their function (Kaushal et al., 2013). Heat-
tolerant genotypes are expected to stabilize the photosynthetic
process better than heat-sensitive genotypes. Measuring sucrose
concentrations reveals the photosynthetic status of plants under
heat stress (Awasthi et al., 2014). A large core-collection of
chickpea genotypes screened or heat tolerance (32/20◦C) in a
natural environment identified two heat-tolerant (ICC15614,
ICCV92944) and two heat-sensitive (ICC10685, ICC5912)
genotypes. The heat-sensitive genotypes had significantly greater
inhibition of RuBisCo (carbon-fixing enzyme), SPS, and SS than
the heat-tolerant genotypes, and thus produced less sucrose
than the tolerant genotypes (Kaushal et al., 2013). Heat-sensitive
genotypes produced far less leaf sucrose than heat-tolerant
genotypes, which impaired its supply to developing reproductive
organs (flowers, pods, and seeds) in sorghum (Prasad and
Djanaguiraman, 2011), tomato (Li et al., 2012), and chickpea
(Kaushal et al., 2013).

In wheat, heat-tolerant genotypes (PBW343 and C306)
exposed to heat stress (>25◦C) in the field had higher SS
activity and thus higher sucrose contents in grain than heat-
sensitive genotypes (PBW521, PBW522) (Bavita et al., 2012).
Limitations in sucrose supply may disrupt the development and
function of reproductive organs (Prasad and Djanaguiraman,
2011; Snider et al., 2011). In lentil, sucrose production is
vital for leaf and anther function, and has been correlated
with SPS activity in natural high-temperature environments
(> 32/20◦C). Heat-tolerant lentil genotypes (IG2507, IG3263,
IG3297, IG3312, IG3327, IG3546, IG3330, IG3745, IG4258,
and FLIP2009) produced more sucrose in their leaves (65–
73%) and anthers (35–78%), than heat-sensitive genotypes
(IG2821, IG2849, IG4242, IG3973, IG3964), which was associated
with superior reproductive function and nodulation in tolerant
genotypes (Sita et al., 2017a). Thus, heat stress negatively affects
sucrose metabolism due to the inhibition of carbon fixation
and assimilation (Awasthi et al., 2014). Sucrose concentrations
in leaves and anthers and SS and SPS activities declined
significantly in two mungbean genotypes (SML832 and SML668)
exposed to heat stress (>40/25◦C day/night) outdoors and in
a controlled environment, more so in SML668 (heat-tolerant)

than SML832 (heat-susceptible) (Kaur et al., 2015). Tomato
cultivars exposed to heat stress in growth chambers (31/25◦C
day/night) or greenhouses (32/26◦C day/night) revealed four
genotypes (FLA7516, Hazera3018, Hazera3042, and Saladate) as
heat-tolerant with high sucrose contents in the mature pollen
grains, and three genotypes (Grace, NC8288, and Hazera3017) as
heat-sensitive, with 50% less sucrose than the tolerant genotypes
(Firon et al., 2006).

Expression of the sucrose transporter gene, OsSUT1, is
important for maintaining photo-assimilate supply to grains.
In rice exposed to high-temperature stress (31/26◦C) in a
glasshouse, cultivar Genkitsukushi (heat-tolerant) had higher
expression of OsSUT1 in stems than Tsukushiroman (heat-
sensitive), indicating that sugar transport is more effective in
Genkitsukushi than Tsukushiroman under heat stress, which
improves grain quality (Miyazaki et al., 2013).

BIOCHEMICAL TRAITS

Heat sensitivity is linked to the expression of several cellular
molecules, including antioxidants (Wilson et al., 2014), HSPs
(Xu et al., 2011) osmolytes (Bita and Gerats, 2013), and
phytohormones (Sharma et al., 2020). These molecules assist
cells to adapt, repair, and survive in adverse temperature
environments; hence, measuring the extent of their expression
in contrasting genotypes grown under heat stress might reveal
mechanisms regulating the heat response.

Oxidative Stress and Antioxidants
Heat stress negatively affects cellular metabolism due to extensive
ROS production that can severely damage lipids, proteins,
and nucleic acids (Bita and Gerats, 2013). Plants protect
themselves from ROS production by activating enzymatic and
non-enzymatic processes (Bita and Gerats, 2013). The main ROS-
scavenging enzymes are superoxide dismutase (SOD), catalase
(CAT), peroxidase (POD), ascorbate peroxidase (APX), and
glutathione reductase (GR), and the non-enzymatic system
includes ascorbic acid (ASC) and glutathione (GSH) (Suzuki
et al., 2012). Genotypes can be selected based on their enzyme
expression level, with more prominent activities among heat-
tolerant than heat-sensitive genotypes (Kumar et al., 2013).
Genotypes respond differently to heat stress due to variation
in their antioxidant systems. Hence, this trait is useful for
identifying heat-tolerant genotypes.

Two tomato cultivars differing in heat sensitivity (Sufen14,
Jinlingmeiyu) were raised in a greenhouse in optimum
temperature (26/18◦C) and heat-stressed (38/30◦C for 6 days
with 2 days recovery). Jinlingmeiyu had lower activities of
SOD, POD, APX, and MDA (malondialdehyde) and lower
proline content than Sufen14, suggesting the involvement of
these enzymes in imparting heat tolerance in Sufen14 (Zhou
et al., 2019). Categorization of 50 Brassica juncea genotypes
into tolerant, moderately tolerant and susceptible genotypes
after exposure to 45◦C was based on oxidative damage tolerant
genotypes had less lipid peroxidation and higher POD, CAT,
and GR activities than moderately tolerant and susceptible

Frontiers in Plant Science | www.frontiersin.org 12 October 2020 | Volume 11 | Article 587264

53

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-587264 October 16, 2020 Time: 22:22 # 13

Chaudhary et al. Heat Tolerance in Crops

genotypes (Wilson et al., 2014). In contrast, Brassica juncea
seedlings grown under optimum (25◦C) and high (45◦C)
temperatures had higher MDA and lipoxygenase (LOX) activities
of antioxidants (SOD, CAT, POX, APX, and GR) in the
thermosensitive genotype (NPJ-119) than the thermotolerant
genotype (NRCDR-02) suggesting variations in the response of
antioxidatnts, which might be stage-or plant-specific (Rani et al.,
2012). Wheat genotypes were differentiated into heat-tolerant
(C306), intermediate heat-tolerant (HD2285), and heat-sensitive
genotype (HD2329) by subjecting them to heat stress (8 and
23 days after anthesis) by delaying the sowing time: C306 had
higher relative water content, ASC, APO, CAT, and SOD and
lower lipid peroxidation and H2O2 content than HD2285 and
HD2329 (Sairam and Srivastava, 2000).

In chickpea plants raised under natural conditions and heat
stressed at 50% flowering (30/20, 35/25, 40/30, and 45/35◦C) in
growth chambers, tolerant genotypes (ICCV07110, ICCV92944)
had lower MDA concentration and H2O2 content than sensitive
genotypes (ICC14183, ICC5912), which was attributed to their
higher activity levels of APX, GR, and ASC (Kumar et al.,
2013). Forty-one mungbean genotypes exposed to heat stress
(>40/28◦C) in the field revealed that heat-tolerant genotypes
(EC693357, EC693358, EC693369, Harsha, and ML1299) suffered
less oxidative damage (1.52–2.0-fold increase MDA; 1.59–1.96-
fold increase H2O2) than sensitive genotypes (2.2–2.4-fold
increase MDA; 2.21–2.93-fold H2O2) (Sharma et al., 2016).
The heat-tolerant genotypes also significantly increased APX
activity (by 1.48–1.77-fold), relative to susceptible genotypes
(1.27–1.37-fold) and similar response was observed for GR
activity. However, heat-tolerant and heat-sensitive genotypes
had similar increases in CAT activity. Similarly, 38 lentil
accessions screened for heat tolerance (>35/20◦C) during the
reproductive stage revealed less oxidative damage (MDA and
H2O2 contents increased) and higher SOD, CAT, APX, and GR
activities—involved in detoxification—in heat-tolerant genotypes
(IG2507, IG3263, IG3745, IG4258 and FLIP2009) than heat-
sensitive genotypes (IG2821, IG2849, IG4242, IG3973, IG3964
(Sita et al., 2017a). Concurrence of heat and drought stress will
do more damage at the biochemical level. Oxidative damage
and antioxidant mechanisms responding toward combined stress
were reported in tomato cultivars. Two cultivars of tomato (CV1;
Sufen14 and CV2; Jinlingmeiyu) were raised in green house
conditions to compare the cultivar difference. Treatment (Heat
stress-38/30◦C, and drought stress-no irrigation) were given to
28 days old seedlings for six days. Significant increase in ROS
such as H2O2 and O2− were reported in both the cultivars than
control (26/18◦C). Their studies showed that CV2 had lower
activity of enzymes-peroxidase, ascrobate peroxidase, superoxide
dismutase, malondialdehyde (MDA) and proline content than
CV1, under combined stress on day 6, clearly depicting cultivar
differences with respect to antioxidant activity (Zhou et al., 2019).

Metabolites
Plant metabolites are low molecular weight compounds
involved in stress tolerance. They play a crucial role in
maintaining the redox homeostasis of cells and stabilizing
cell membranes and proteins (Wahid et al., 2007) through

various intermediate/precursor compounds, such as compatible
solutes, signaling agents, and antioxidants (Kaplan et al.,
2004). Metabolites are categorized into primary and secondary
metabolites. Primary metabolites that are specifically upregulated
in response to abiotic stress are amino acids (proline),
polyamines (spermidine, spermine, putrescine), carbohydrates
(sucrose, hexoses, polyhydric alcohols), and glycine betaine.
Similarly, secondary metabolites include phenolic compounds
(flavonoids, isoflavonoids, anthocyanins), terpenoids (saponins,
tocopherols), and nitrogen-containing metabolites (alkaloids
and glucosinolates) (Rodziewicz et al., 2014). Under heat stress,
plants restructure their metabolites to help the cells to maintain
homeostasis via the production of stress-induced compounds
(Serrano et al., 2019). Activation of heat-shock factors, such as
HSFA2 and HSFA3, increases the level of metabolites such as
galactinol and its derivatives in response to heat stress (Song
et al., 2016). Therefore, metabolites may serve as a useful tool
for selecting heat-tolerant varieties under high-temperature
stress. Comparing heat-tolerant and heat-sensitive genotypes can
identify metabolite markers that are constitutively expressed and
allow selection of superior germplasm.

Seed metabolomic analysis performed on contrasting soybean
genotypes (PI587982A, heat-tolerant; A5279 and DP3478,
heat-sensitive) revealed 25 metabolites that differed between
genotypes, including tocopherol isoforms, ascorbate precursors,
flavonoids, two amino acids, and amino acid derivatives
(Chebrolu et al., 2016). At 36◦C, 10 flavonoids were more
abundant in the seeds of the heat-tolerant genotype than the
heat-sensitive genotypes, along with several tocopherols (major
antioxidants). Moreover, the heat-tolerant genotype had higher
levels of a precursor of L-ascorbic acid biosynthesis—gulono-
1,4-lactone—than the heat-tolerant genotypes. Overexpression
of these stress-induced compounds provides thermotolerance
to soybean seeds, which ultimately perform better in terms
of seed vigor, seed germination, seed weight, and oil content.
Metabolomic analysis of rice spikelets in a heat-tolerant
(N22) and heat-sensitive (Moroberekan) genotype revealed
that N22 accumulated more metabolites than Moroberekan,
including carbohydrates (glucose 6-phosphate, fructose 6-
phosphate, glucose, maltose, and other sugars), compatible
solutes, and amino acids (leucine, isoleucine, and valine). N22
had lower levels of trehalose, sugar phosphatases, malic acid,
and galactaric acid than Moroberekan under heat stress (Li X.
et al., 2015). In wheat, a comparative analysis of metabolites in
transgenic wheat (PC27 and PC5) and its wild type (varying in
heat sensitivity), exposed to heat stress (40◦C for 4 h) during
heading revealed 25 metabolites that were highly expressed
in transgenic wheat, including proline, three sugar alcohols
(inositol, mannitol, and xylitol), pyruvic acid, and other amino
acids (glycine, alanine, serine, valine, and tyrosine) (Qi et al.,
2017). The metabolite profiling approach is an effective way to
accurately screen and select the best-performing genotypes.

Proline is a multifunctional amino acid with diverse roles
in maintaining cellular redox balance by dissipating excess
of reducing potential (Rivero et al., 2004). Proline levels are
upregulated under stress conditions as its biosynthesis is an
adaptive response to reduce excess NADPH produced in response
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to the halt in CO2 fixation in the Calvin cycle due to stomatal
closure (Berry and Bjorkman, 1980). Moreover, under stress
conditions, proline is involved in osmotic adjustment, ROS
scavenging, and as an energy source. Therefore, high proline
contents under high-temperature stress can be used to screen
heat-tolerant genotypes. Twenty wheat genotypes were screened
for heat tolerance by exposing them to 25 or 35◦C, and
measuring proline content and membrane damage (Ahmed and
Hasan, 2011). Heat-tolerant genotypes (Bijoy, Sufi, Kanchan,
Fang 60, BAW 1059, BL 1883, BL 1022, IVT 7, IVT 8,
IVT 9, IVT 10, and BAW 917) had higher proline contents
(>200%) and less membrane damage (<50%) than heat-sensitive
genotypes (Shatabdi, PRODIP, BAW 1064, Gourab, Pavon 76,
Sonara, Kalyansona, and IVT 6). Thirty-five-day-old seedlings
of different cabbage cultivars, including Chinese cabbage and
their hybrids, were exposed to two temperature regimes (25 or
35◦C) at the flower bud stage and assessed for heat tolerance
based on proline contents in stalks, flower buds, and leaves—
heat-tolerant cultivars (Yoshin, Kenshin, and full white) had
higher proline levels than heat-sensitive cultivars (YR Kinshun,
Chihiri 70, and Large leaf) (Hossain et al., 1995). Six cotton
cultivars (Sicala, Acala 1517-88, Molopo, Alpha, Delta Pine
Acala90, and OR19) were tested for genetic variability against
combined heat and drought stress. Stress treatment (Heat
stress; 40◦C without irrigation for 15 days) were imposed on 3
weeks old seedlings. Stress treatment were increased the proline
content in all the genotypes but the accumulation was more
in tolerant genotypes (Alpha, Delta Pine Acala90, and OR19)
compared to sensitive genotypes (Sicala, Acala 1517-88, Molopo)
(De Ronde et al., 2000).

Heat-Shock Proteins
During rapid heat stress, plants synthesize and accumulate
specific proteins called heat-shock proteins (HSPs) (Howarth,
1991); this is a universal response to high-temperature stress in
all organisms (Vierling, 1991). Heat-shock genes are upregulated
during stress to encode HSPs which are vital for plant survival
under such conditions (Chang et al., 2007). Three classes of
HSPs are distinguished, according to molecular weight—HSP90,
HSP70, and low molecular weight proteins. HSPs provide stress-
related chaperone functions in plants under stress conditions
(Reddy et al., 2010, 2016). Chaperones have a role in protein
synthesis, maturation, targeting, degradation, renaturation, and
membrane stabilization (Reddy et al., 2014, 2016). HSPs are
located in the cytoplasm, nucleus, mitochondria, chloroplasts,
and endoplasmic reticulum (Waters et al., 1996). Heat-stress
transcription factors (HSFs), located in the cytoplasm in an
inactive state, control HSP gene transcription and play a vital
role in plant thermotolerance. Specific HSPs have been identified
in response to high temperature, including HSP68 in the
mitochondria of potato, maize, soybean, and barley (Neumann
et al., 1994). The expression profiles of HSPs have been compared
in plant species/genotypes contrasting in heat sensitivity. For
instance, the higher heat tolerance of maize than wheat and rye
at 42◦C is correlated with the expression of five mitochondrial
low molecular weight HSPs (28, 23, 22, 20, and 19 kDa), as
opposed to only 20 kDa in wheat and rye (Korotaeva et al., 2001).

According to Sharma-Natu et al. (2010), HSP18 was upregulated
in developing grains of heat-tolerant wheat exposed to 3.2–3.6◦C
higher temperatures than normal. In other studies, HSP100
increased with heat stress in a tolerant wheat variety (Sumesh
et al., 2008). Similarly, HSP26 increased in heat-tolerant wheat
genotypes (K7903, C306) at 42◦C, relative to heat-sensitive
genotypes (PBW343, HD2329) (Hairat and Khurana, 2016). At
42◦C, the expression levels of five Hsps—Hsp26.7, Hsp23.2,
Hsp17.9A, Hsp17.4, and Hsp16.9A—were upregulated in the
heat-tolerant rice cultivar Co39, relative to the heat-sensitive
rice cultivar Azucena, and regarded as biomarkers for screening
rice cultivars for heat tolerance (Chen et al., 2014). At 40◦C,
potato cultivar Norchip synthesized small (sm) Hsps for longer
than other cultivars. In Norchip and Desiree, an 18 kDa small
(sm)HSP increased for up to 24 h, while in cultivars Russet
Burbank and Atlantic, the levels started to decline after 4 and
12 h respectively (Ahn et al., 2004). Anthers of a heat-tolerant
tomato cultivar had higher constitutive levels of HSP100 than
a heat-sensitive cultivar (Pressman et al., 2007). In chickpea,
HSP levels increased in genotype JG14 (heat-tolerant) more than
genotype ICC16374 (Heat-sensitive) when exposed to 42/25◦C
at anthesis (Parankusam et al., 2017). Likewise, in peanut, the
best-characterized aspect of acquired thermotolerance is HSP
production, with ICGS76, COC038, and COC068 selected as
heat-tolerant genotypes and COC812, COC166, Tamrun OL 02,
and Spanco selected as heat-sensitive (Selvaraj et al., 2011). In
another study, heat-tolerant peanut genotype ICGS 44 showed
higher HSP expression throughout the stress period than heat-
sensitive genotypes AK 159 and DRG 1 (Chakraborty et al.,
2018). Comparison of expression of heat shock proteins in
wheat cultivars (Katya and Sadovo) under combined heat and
drought stress (40◦C/56%) reported 100% elevation of HSP100
and HSP70 as compared to 60 and 10% elevation under
individual drought and heat stress in tolerant cultivar Katya
(Grigorova et al., 2011).

GENE/S EXPRESSION

Relatively few studies have been undertaken on changes
in gene expression in contrasting genotypes under heat
stress, but vital information has been garnered. In wheat,
two contrasting genotypes—Chinese spring (heat-sensitive)
and TAM107 (heat-tolerant)—were analyzed for changes in
gene expression upon exposure to heat stress (40◦C), using
Affymetrix Barley 1 GeneChip, and expressed sequence tags. The
analysis identified 6550 heat-responsive probe sets, accounting
for 11% of the total probe sets (Qin et al., 2008). Heat-
tolerant genotype (2199 probe set) had more heat-responsive
probe sets than the heat-sensitive genotype (2084 probe set),
which mainly belonged to HSPs, transcription factors, calcium
and sugar signaling pathways, phytohormones biosynthesis
and signaling, ribosomal proteins, RNA metabolism, and
primary and secondary metabolites (Qin et al., 2008). In
rice, contrasting genotypes N2219379 (heat-tolerant) and IR64
and N226264 (heat-susceptible) were compared for their heat
response at 38◦C using reproductive function and molecular
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approaches (González-Schain et al., 2016). Heat stress impaired
reproductive functions, such as pollen production, pollen
number, anther dehiscence, pollen germination, and stigma
receptivity, more so in the sensitive genotypes than the
tolerant genotype (Devasirvatham et al., 2012). Eighteen
heat-responsive genes, such as HSFA2a, OsFKBP62b, and
OsHSP17.9A had higher upregulation in tolerant genotypes
than sensitive genotype. Under heat stress, the expression of
HSFA2a increased 268-, 15-, and 3.2-fold in N2219379 (heat-
tolerant), N226264 (heat-sensitive), and IR64 (heat-sensitive),
respectively and that of OsFKBP62b increased by 108-, 10-, and
3-fold in N2219379, N226264, and IR64, respectively (González-
Schain et al., 2016). A study was conducted on 197 spring
wheat genotypes from ICARDA at two different locations, one
in Sudan (Wad Medani) and another one in Egypt (Sids),
to identify single nucleotide polymorphism (SNP) markers
association mapping. The study detected 111 significant marker-
trait associations; the wsnp_Ex_c12812_20324622 marker on
chromosome 4A was significantly correlated with yield at
both locations. Wheat genotypes carrying the cytosine base at
the wsnp_Ex_c12812_20324622 and wsnp_Ex_c2526_4715978
markers produced more yield, compared to those carrying the
alternative bases, by 15%, indicating the significance of involving
these markers for marker-assisted selection in breeding programs
to increase yield under heat stress. The best performing 20
high-yielding as well as heat-tolerant wheat genotypes, found
in this study, have been distributed across Central and West
Asia and North Africa (CWANA) and sub-Saharan Africa (SSA)
for potential direct release and/or use as parents after local
adaptation trials (Tadesse et al., 2019).

DNA methylation is one of the mechanisms of epigenetic
modifications that plays a crucial role in imparting stress
tolerance for various environmental stresses (Lukens and
Zhan, 2007). A study on heat-tolerant (Huyou 2) and heat-
sensitive (Fengyou 1) Brassica napus seedlings exposed to 45◦C
measured changes in DNA methylation levels and the cytosine
methylation pattern using Methylation Sensitive Amplification
Polymorphism (MSAP) analysis and RT-PCR (Gao et al., 2014).
Under heat stress, percentage of methylated bands was 10.7% in
Fengyou 1 (heat-sensitive) and 0.6% in Huyou 2 (heat-tolerant)
(Gao et al., 2014). The cytosine methylation was also higher
in the heat-sensitive genotype than the heat-tolerant genotype
suggesting involvement of methylation to heat stress sensitivity. It
has already been reported that superior crop genotypes avoid the
methylation process (Gao et al., 2014). The effects of combined
heat and drought stress on the gene expression in durum
wheat (Triticum turgidum subsp. durum) cultivar “ofanto” were
evaluated (Rampino et al., 2012). Plants were raised in the growth
chamber and stress conditions were introduced at booting stage;
heat stress- 30/22◦C for 2 days, then raised to 34/24◦C for
following 2 days, 40/32◦C for next one day and 42◦C for last
day and collected samples after 6 h of heat treatment, however,
drought conditions were maintained at 28% field capacity. Gene
expressions, analyzed through cDNA-AFLP studies, showed that
combined stress down-regulated 92 genes and up-regulated 132
genes. Many of these genes reported to control the expression
level of HSPs and dehydrins.

POLLEN-BASED TRAITS

In most plant species, reproductive tissues, mainly male
gametophytes, are more sensitive to heat stress than female
gametophytes (Djanaguiraman et al., 2018a), and the threshold
temperature for imposing damage in these tissues is lower than
that for vegetative tissues. Damage imposed by heat stress can
occur pre- or post-pollination, which impair fertilization and
ultimately reduce seed set (Prasad et al., 2008a, 2017; Prasad and
Djanaguiraman, 2014; Sage et al., 2015). Pre-pollination events
that are highly susceptible to high temperature are (1) meiosis I
and meiosis II of the microspore mother cell (Young et al., 2004),
(2) development and subsequent dissolution of the tapetum layer
(Farooq et al., 2011), and (3) exine and intine formation (Nahar
et al., 2016). Post-pollination events that are highly susceptible
to heat stress are (1) pollen load (Prasad et al., 1999b, 2006),
(2) pollen germination (Prasad et al., 2001), (3) pollen tube
growth (Prasad et al., 2001), and (4) fertilization (Prasad et al.,
2001; Barnabás et al., 2008; Hedhly, 2011; Sita et al., 2017b).
The development of male gametophyte under high temperature
is more susceptible than female gametophyte (Djanaguiraman
et al., 2018a; Liu et al., 2019). However, in peal millet (Pennisetum
glaucum), the female gametophyte was more sensitive than male
gameophyte (Djanaguiraman et al., 2018b). Several effects of heat
stress on reproductive function have been reported. For instance,
it reduced the fertility of the microgametophyte in Brassica (Rao
et al., 1992), and impaired meiosis in the male gametophyte
in tomato (Lycopersicon esculentum), which affected pollen
germination and pollen tube growth (Firon et al., 2006). Shriveled
pollen grains under high temperature may be why heat stress
prevents starch accumulation in anther walls and pollen grains
by disturbing the source–sink relationship that subsequently
leads to lower levels of soluble sugars for their development
(Pressman et al., 2002; Djanaguiraman et al., 2018a). Variation
in contrasting genotypes of various pollen traits; could be used
to identify and screen genotypes tolerant to high-temperature
stress. For instance, 12 field-grown cultivars of Brassica napus L.
were screened for heat tolerance based on pollen traits—pollen
viability, pollen germination and pollen tube length—at 33.7◦C
(Singh et al., 2008). Pollen grains were placed on a germinating
medium in Petri plates and artificially incubated by raising the
temperature by 5◦C at 5-hourly intervals from 10 to 35◦C for
30 h before measuring the three pollen traits. As a result, the
Brassica cultivars were divided into four groups—heat-tolerant
(Kadore, ARC98007, NPZ0591RR, and DSV06200), moderately
heat-tolerant (Plainsman, Kronos and DSV05102), moderately
heat-susceptible (DSV05101 and KS4085), and heat-susceptible
(KS4002, Ceres and KS3077). Thirty-four tomato genotypes were
tested under field conditions in a normal (27.1/15.5◦C) and
summer (39.2/24.4◦C) season for heat tolerance, which identified
three heat-tolerant genotypes (Pusa Sadabahar, FLA-7171, and
NDTVR-60) with high pollen germination and pollen viability,
relative to the heat-susceptible genotypes (Floradade and H-86)
(Srivastava et al., 2012). In another study, 17 tomato genotypes
were evaluated under heat stress (32/26◦C) for thermotolerance
on the basis of pollen traits (Paupière et al., 2017). The tomato
plants were raised in a greenhouse (25/19◦C), before being
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moved to climate chambers when the first flower appeared
for the subsequent heat treatment (32/26◦C). Thermotolerant
genotypes (LA2854, LA1478, and LA0417) had higher pollen
viability and pollen numbers than thermosensitive genotypes
(LA1719, LA1580, and SWEET4). Similarly, 18 rice (Oryza
sativa) genotypes varying in heat sensitivity were raised in a
greenhouse before being transferred to growth cabinets for high-
temperature exposure during anthesis—30◦C (control), and 35
and 38◦C (heat stress) In this study, two experiments were
conducted in two successive years, 1st year experiment involved
30◦C (control), and 35◦C and 38◦C (heat stress) for 2h on the
onset of anthesis while 2nd year experiment involved the same set
of conditions but heat stress exposure was raised to 6 h (Jagadish
et al., 2008). A lower fertility percentage was noticed at 38◦C for 6
h compared to 2 h. Genotype N22 had the highest spikelet fertility
(86%) and was selected as highly tolerant, while Azucena and
Moroberekan had <10% spikelet fertility, thus being the most
susceptible genotypes (IR64, CG14); the observations correlated
with superior pollen performance at high temperature (Jagadish
et al., 2008). In vitro pollen germination and pollen tube growth
were used to screen 14 cotton cultivars for heat tolerance by
raising the temperature by 10◦C at 5-hourly intervals from 10
to 50◦C for 24 h under controlled environment (Liu et al.,
2006). The study revealed that boll retention and boll number
per plant were strongly correlated with pollen germination and
pollen tube length. The genotypes were categorized into heat-
tolerant (Sumian 16 and HLY11), moderately tolerant (JC108,
Simian 3, Simian 4, and Lumian 584), moderately susceptible
(Zhongmiansuo 12, Zhongmiansuo 41, Zhongmiansuo 9409,
Xinyoumian 68, and Sumian 12), and susceptible (TS18, HLY15,
and NuCOTN33B).

In legumes, heat stress exposure (47◦C) to 44 soybean
genotypes identified heat-tolerant (DG 5630RR), heat-
intermediate (PI 471938), and heat-sensitive (Stewart III)
genotypes based on pollen germination and pollen tube
length (Salem et al., 2007). Similarly, heat-tolerant and heat-
sensitive mungbean genotypes were identified based on pollen
stainability (Suzuki et al., 2001). The plants were exposed to
high temperatures (38/28◦C) for 24 h in a growth chamber, with
pollen stainability recorded on flowers that opened 8–11 days
after heat treatment. The heat-tolerant genotype (Haibushi) had
higher pollen stainability (60%) than heat-sensitive genotypes
(<20%; Kentucky Wonder, Oregon, and Okinawa Local). Heat
stress (43/30◦C and 45/32◦C) in mungbean affected pollen
viability, pollen germination, and pollen tube length, more so
in the heat-tolerant genotype (SML832) than the heat-sensitive
genotype (SML668) in outdoor and controlled conditions
(Kaur et al., 2015; Bindumadhava et al., 2018). Exposure of
45 mungbean genotypes to high temperature (42◦C) during
flowering in the field produced fewer and more shriveled
pollen grains, and identified heat-tolerant genotypes (C693357,
EC693358, EC693369, Harsha, and ML1299) with superior
pollen traits (pollen germination, pollen viability) (Sharma et al.,
2016). In chickpea, reproductive traits such as pollen viability,
pollen germination, and pollen tube length were used to screen
a large number of chickpea genotypes for heat tolerance by
delaying sowing to expose plants to temperatures > 32/20◦C

(day/night); a few tolerant (ICC15614, ICCV92944) and sensitive
(ICC10685, ICC5912) genotypes were identified (Kaushal et al.,
2013). Another study identified heat-tolerant and heat-sensitive
chickpea genotypes using reproductive traits (Devasirvatham
et al., 2013) by exposing plants to high temperature (≥35◦C).
Pollen grains were more sensitive to high temperature than
stigmas in both controlled and field conditions. Genotype
ICC1205 was identified as heat-tolerant and ICC4567 as heat-
sensitive, with a positive correlation between reproductive and
yield traits. Lentil is sensitive to heat stress (>35◦C), which
adversely impairs pollen development and function, resulting
in poor pod yields. Based on pollen traits, Kumar et al. (2016)
identified heat-tolerant genotypes (FLIP2009-55L, IG2507,
and IG4258) after screening 334 lentil accessions for heat
tolerance under field conditions (>35/25◦C), with a positive
correlation between pollen viability and filled pods/plant. In
another field study, heat stress (>35/25◦C) reduced pollen
viability in lentil by up to 78–83% (Sita et al., 2017b), with
heat-tolerant genotypes (IG2507, IG3263, IG3745, IG4258, and
FLIP2009) maintaining higher pollen germination (48–50%)
than heat-sensitive genotypes (28–33%), which was positively
correlated with yield. In soybean, exposure of cultivars (i.e.,
IA3023 and KS4694) and plant introduction lines (PI) lines (i.e.,
PI393540 and PI588026A) to heat stress (36.5–38.6◦C) between
gametogenesis and full bloom, as compared to control treatment
(29.5–31.6◦C; optimum temperature) revealed that the cultivars
were more heat tolerant because of greater pollen germination
and less distortion in pollen shapes (Djanaguiraman et al.,
2019). Combined stress treatment damages the reproductive
stages mainly pollen grains to a larger extent (Sehgal et al.,
2017). Genetic variations among 38 cotton cultivars for heat
and drought were assessed using reproductive and physiological
traits. Among reproductive traits, pollen germination as well
as pollen viability were tested at two temperature regimes (30
and 38◦C) and cumulative heat and drought stress response
(CHDSRI) using photosynthetic and reproductive traits was
calculated. Based upon CHDSRI, 12 genotypes were categorized
as heat and drought sensitive, 20 as intermediate and 6 genotypes
as heat and drought tolerant (CT12214, MON11R124B2R2,
UA48, MON11R112B2R2, PHY367WRF, and PX53221 1WRF)
(Singh K. et al., 2018), which could be potentially used for
breeding programs.

YIELD-BASED PARAMETERS

Heat stress adversely affects the reproductive and seed-filling
stages, leading to severe reductions in crop yield and quality
(Sehgal et al., 2018). Various studies have confirmed that the
relative performance of plants in terms of yield under heat
stress was suitable for selecting genotypes with heat-tolerance
mechanisms/traits that can be used for crop improvement.
Various traits linked to yield have been used to identify genotypes
contrasting for heat tolerance.

Seed formation and seed filling is the last phase in the life cycle
of seed plants. Heat stress drastically affects seed development
and seed filling in many crop species, which consequently
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increases the fraction of abnormal and shriveled seeds. Seed
development starts from cell division; when seed cells are fully
formed, storage reserves start to accumulate in the seed (Egli,
1998). The direct effect of heat stress is reportedly on the
division and size of endosperm cells (Commuri and Jones,
1999), such that lower amounts of carbohydrates, proteins, lipids,
and starch accumulate in developing seeds. Heat stress also
accelerates the rate and duration of seed filling, resulting in more
abnormal seeds, which reduces crop yield. Heat stress reduces
seed yield by (i) reducing seed number, (ii) reducing seed weight,
and (iii) accelerating the seed filling rate (Farooq et al., 2017;
Prasad et al., 2017).

Seed Filling Rate and Duration
Heat stress hastens the seed filling rate and reduces the duration
of seed filling. In cowpea, raising the temperature from 15.5
to 26.6◦C shortened the seed filling duration by 14–21 days
(Nielsen and Hall, 1985). Heat stress impaired the growth of
the cotyledons, and reduced the number of endosperm cells and
cell expansion in the embryo, which had a negative effect on
photosynthate translocation in developing seeds and resulted
in shriveled seeds in maize (Jones et al., 1985; Munier-Jolain
and Ney, 1998). A heat-stressed environment (>32/20◦C) during
seed development increased the seed filling rate in six chickpea
genotypes, relative to the optimum temperature (Awasthi et al.,
2014). The same study revealed that heat stress decreased the
duration of seed filling more in heat-sensitive (ICC 4567) than
heat-tolerant (ICC1356, ICC15614) genotypes. High temperature
(25/20◦C) reduced the duration of grain filling by 30% and
increased the grain-filling rate by 20% in six wheat genotypes
(G1, G2, G3, G4, G5, G6), relative to the control (20/15◦C),
more so in heat-sensitive (G6) than heat-tolerant (G4) genotypes
(Yin et al., 2009).

Seed Number
Heat stress leads to poor pollination and fertilization, which
reduces seed number. In faba bean (Vicia faba L), seed number
declined with increasing temperature (Bishop et al., 2016). In
mungbean, heat-tolerant genotype (SML 832) produced more
seeds than heat-sensitive genotype (SML 668) under high
temperature (45/32◦C) in the field (Kaur et al., 2015). While
testing 24 genotypes of common bean in the greenhouse under
different temperature regimes (24/21◦C, 27/24◦C, 30/27◦C,
33/30◦C), 33/30◦C was the most damaging to plants with
respect to seed number and seeds/pod, with the reductions more
prominent in heat-sensitive genotypes (–66%; A55, Labrador,
Majestic, IJR) than heat-tolerant genotypes (–31%; Brio, Carson,
G122, HB1880, HT38, Venture) (Rainey and Griffiths, 2005).
Heat stress (36/27◦C) reduced seed number/pod in 46 of 48 lines
of cowpea (Vigna unguiculata) evaluated for heat tolerance in a
greenhouse; two heat-tolerant lines (B89-600 and TN88-63) did
not exhibit reduced seed numbers/pod (Ehlers and Hall, 1998).
The average number of seeds/pod varied in the heat-sensitive
genotypes (e.g., 3.3 in IT82E-60, 2.9 in Bambey 21 and 3.6 in
IT84S-2049), while those of the heat-tolerant genotypes had 6.3
in B89-600 and 8.1 in TN88-63 compared to control values

(e.g., 11 in IT84S-2049, 9.6 in IT82E-60, 7.4 in B89-600 and
6.4 in TN88-63).

Seed Weight
Seed weight represents the ultimate yield of the crop; hence it has
been reliably used as a trait to screen for heat tolerance (Sehgal
et al., 2018). Chickpea yields declined when genotypes were
exposed to various temperature ranges (35/25◦C, 40/30◦C, and
45/35◦C) in a growth chamber, relative to the control (30/20◦C)
(Kumar et al., 2013). At 40/30◦C, the seed weight of heat-sensitive
genotypes (ICC14183, ICC5912) declined by 37–45% compared
with heat-tolerant genotypes (ICCV07110, ICCV92944). At
45/35◦C, heat-tolerant genotypes also experienced a decline in
seed weight but heat-sensitive genotypes did not set any pods.
Similarly, mungbean genotypes grown outdoors in April, with
high temperatures (45/32◦C) coinciding with reproductive phase,
reduced seed weight by 48.3% in the heat-sensitive genotype
(SML668) and 35.1% in the heat-tolerant genotype (SML832),
relative to control (Sharma et al., 2016). Likewise, seed weight
of lentil grown at high temperature (>32/20◦C) in field declined
drastically compared to control plants (Bhandari et al., 2016),
more so in heat-sensitive genotypes (–50%; LL699 and LL1122)
than the heat-tolerant genotype (–33%; LL931). In common
bean, heat stress (33/30◦C) under field conditions was significant
for the selection of heat-tolerant (Brio, Carson, G122, HB1880,
HT38, Venture) and heat-sensitive genotypes (A55, Labrador,
Majestic, IJR), based on seed weight. At this temperature, seed
weight declined by 47% across genotypes, more so in heat-
sensitive genotypes (–88%) than heat-tolerant genotypes (–25%)
(Rainey and Griffiths, 2005). In cowpea, studies at two locations
with varying temperatures (Coachella (41/25◦C) and Riverside
(36/17◦C) assessed the effect of high temperature on the yield of
contrasting genotypes (Ismail and Hall, 1999). Yield parameters
such as seed weight and seeds/pod reduced drastically, as the
temperature increased, however, heat-tolerant genotypes (H36,
H8-9, DLS99) at higher temperature (41/25◦C) retained more
seed weight (193 mg/seed) than heat-sensitive genotypes (CB5,
CB3, DLS127), which had smaller seeds with an average weight
of 168 mg. Screening experiments on Pearl millet, conducted
over a period of 3–4 years (2009–2012) at ICRISAT, India,
involving 221 hybrid parental lines (both B- and R-lines), 53
germplasm accessions and 4 improved populations over 4-year
period showed large genetic variability in seed set at daily
maximum air-temperature of ≥ 42 ◦C during flowering. Five
hybrid seed parents (ICMB 92777, ICMB 05666, ICMB 00333,
ICMB 02333, and ICMB 03555) and a germplasm accession
IP 19877 with 61–69% seed set as compared to 71% seed set
in a heat tolerant commercial hybrid 9444 (used as a control)
was identified. A comparative study on 23 hybrids and their
parents for seed set at high air temperature (>42◦C) showed heat
tolerance as a dominant trait, indicating that heat tolerance in one
parent would be ample to generate heat tolerant hybrids in pearl
millet (Gupta et al., 2015). In sub-Saharan Africa, 24 elite durum
wheat breeding lines and cultivars were tested for adaptation
to warm environments at two stations: Kaedi, Mauritania and
Fanaye, Senegal. Top grain yield was recorded at 5,330 kg ha−1

and the average yield at 2,484 kg ha−1. Biomass and spike
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fertility (i.e., number of seeds produced per spike) were found
to be the most vital adaptive traits to warm environments. The
study showed three genotypes (“Bani Suef 5,” “DAWRyT118,” and
“DAWRyT123”) as the most stable and high yielding; while the
last two genotypes were the best performers (Sall et al., 2018).

Combined drought and heat stress were found to be greatly
detrimental for production potential of crops. Thus, lentil
genotypes were evaluated for their response to impacts of
combined drought and heat stress (drought tolerant: DPL53
and drought sensitive: LL699) (Sehgal et al., 2019). The heat
and drought (33/28◦C with 50% field capacity) treatments
were imposed to determine to effects on yield traits (seed
filling duration, seed filling rate, seed number/plant, and seed
weight/plant). Under combined stress, a decline in seed filling
duration by 5.4–8.9 days, seed growth rate by 44–60.2%,
seed number/plant by 35–48.7%, seed weight/plant by 47–59%
compared to control. This reduction pattern was more drastic
in heat sensitive genotype than heat tolerant genotype. A field
experiment on 300 maize inbred lines test-crossed to CML539
was conducted at multiple locations (Tlaltizapán, México (18◦41/c
N, 99◦07/c W, and 940 m asl), Kiboko, Kenya (2◦21/c S, 37◦72/c
E, and 975 m asl), Chiredzi, Zimbabwe (21◦01/c S, 31◦34/c E,
and 430 m asl), at the Nakhonsawan Field Crops Research
Center in Takfa, Thailand (15◦21/c N, 100◦30/c E, and 87 m
asl), and at the ICRISAT experimental station in Hyderabad,
India) to evaluate their response to reproductive stage drought
stress, heat stress, and combined drought and heat stress. The
study identified few lines (notably La posta Sequia C7-F64-
2-6-2-2 and DTpYC9-F46-1-2-1-2) having higher tolerance to
drought and combined drought and heat stress. The findings
indicated that tolerance to individual stresses was genetically
distinct from tolerance to combined stresses. The assessment
indicated that most of the current drought donors and key
inbreds used in widely grown African hybrids were sensitive
combined drought and heat stresses. The identified lines, as
mentioned above, need to be introduced into breeding programs
for maize (Cairns et al., 2013).

BREEDING FOR HEAT TOLERANCE
INVOLVING CONTRASTING GENOTYPES

Breeding techniques remain one of the inexpensive and viable
approaches for developing heat stress tolerance in crop plants
(Priya et al., 2018). Field-based screening of crop gene pool
and landraces for yield and heat stress tolerance in targeted
environments is a way to develop heat tolerant genotypes in
various crop plants (Craufurd et al., 1998; Hede et al., 1999;
Ntare et al., 2001; Jagadish et al., 2008; Scafaro et al., 2010;
Krishnamurthy et al., 2011; Dhanda and Munjal, 2012; Pradhan
et al., 2012). The breeders also focus toward yield and yield-
related traits under heat stress so that genotypes/progeny lines
with higher yield under heat stress can be selected. Varieties
possessing heat stress tolerance as well as higher yields will ensure
adequate food to the world’s burgeoning population under global
warming. To develop heat tolerant crop varieties, contrasting
donor parents are crossed, progenies advanced using various

crop breeding strategies and desirable heat tolerant segregants are
selected. Finally, heat tolerant homozygous lines are evaluated
for yield and other useful agronomic traits under appropriate
environments followed by possible release as a variety/ies. For
transfer of heat tolerance to high yielding but heat sensitive mega
crop varieties (varieties that occupy large area) from heat tolerant
landraces or wild relatives, backcross breeding with recurrent
parent remains an effective strategy as it allows for the recovery
of the genome of recurrent parent, thereby traits of mega variety,
with an addition of heat tolerance. To broaden the genetic
base for heat tolerance, next generation breeding schemes viz.,
development of Multiparents Advanced Generation Intercross
(MAGIC) and Nested Association Mapping (NAM) population
are also receiving wider attention (Li H. et al., 2018).

Morpho-physiological and phenological traits could play an
important role in contributing toward heat stress adaptation as
these could act as surrogate traits for selecting heat tolerance
(Reynolds et al., 2007). These physiological traits range from
early phenology (Gaur et al., 2015), canopy temperature (Kumar
et al., 2012; Mondal et al., 2013), chlorophyll fluorescence,
chlorophyll content (Ristic et al., 2007; Kumar et al., 2013),
cell membrane stability (Blum and Ebercon, 1981), stay green
trait or delayed senescence (Thomas and Howarth, 2000; Ristic
et al., 2007), pollen and pollen related traits (Devasirvatham
et al., 2010; Kaushal et al., 2013; Djanaguiraman et al., 2018,
Djanaguiraman et al., 2019) to water soluble carbohydrates in
stem (Schittenhelm et al., 2020). The physiological trait-breeding
has gained great attention for improving plant adaptation to
heat stress in various crop plants especially in wheat (Reynolds
et al., 2007; Reynolds and Langridge, 2016). A focus on selection
of physiological traits that are correlated with yield either
directly or indirectly could increase chances of accumulation
of yield contributing genes thereby ensuring higher plant yield
under heat stress (Reynolds and Langridge, 2016). In developing
heat tolerance in wheat, the cross-species gene transfer system
was used wherein three heat-tolerant accessions of Aegilops
tauschii (wild genotype) were crossed with bread wheat (Triticum
aestivum L.) cultivar “PBW 550” (Sehgal et al., 2011). The
BC1F4 lines derived from these crosses that possessed improved
cell membrane stability, TTC and chlorophyll retention under
heat stress were selected (Sehgal et al., 2011). For winter
sown crops, early phenology allows plants to escape heat stress
(Bueckert et al., 2015). For such crops, selection for earliness
could be an important option to develop crop varieties that
escape heat stress thereby escaping the damage caused by heat.
As reproductive processes are most vulnerable to heat stress,
physiological screening of genotypes for two reproductive traits,
i.e., better pollen viability and pollen germination under heat
stress could lead to the identification of heat tolerant genotypes
as stability of these two traits under heat stress will ensure
better fertilization, adequate seed set and improved grain yield
(Devasirvatham et al., 2013; Poli et al., 2013). Relying on higher
pollen germination and better seed setting capability Nguyen
et al. (2013) identified two sorghum R9403463–2-1 and IS8525
genotypes from a set of diverse sorghum genotypes originated
from United States, Australia, Africa and Asia. Likewise, several
promising genotypes viz., PI609489, AQL33/QL36; CCH2; IS
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8525 (Singh V. et al., 2015) due to their better seed setting
ability and Macia, BTx378, SC155 (Sunoj et al., 2017) having
better pollen germination capability and maintaining high
grain yield under heat stress were identified. Given the field
screening of large set of germplasm and hybrid parental lines
of Pearl millet under high temperature stress, a wide range
of genetic variability for seed setting was noted in under high
temperature stress (Gupta et al., 2015). Several parental lines
viz., ICMB 92777, ICMB 05666, ICMB 00333 along with IP
19877 germplasm accession exhibited better seed setting under
heat stress and thus could be used in developing heat tolerant
hybrid Pearl millet (Gupta et al., 2015). Likewise, Jukanti et al.
(2017) underscored the importance of CZH 233, CZP 9603,
CZI 2011/5, and CZMS 21A genotypes due to their better
seed setting higher capability of grain yield for developing
superior Pearl millet genotypes under heat stress. Likewise,
the potentiality of “Norchip” and “Désirée” potato cultivars in
potato breeding program for improving genetic gain because
of their better photo-assimilate transport from leaf to tuber
under heat stress has been discussed (Basu and Minhas, 1991;
Ahn et al., 2004).

Heat stress tolerance is a polygenic trait. Classical genetics
was earlier used to identify the genetic bases of heat tolerance
in various field and vegetable crops (Patel and Hall, 1988;
Marfo and Hall, 1992; Gupta et al., 2015; Jha et al., 2019), this
approach, however, could not completely explain the genetic
nature of heat stress tolerance because of its multigenic nature
(Upadhyaya et al., 2011). Subsequent advances in molecular
marker technology has allowed identification and precise
mapping of genes/QTLs governing heat stress tolerance several
crops such as rice (Gui-lian et al., 2009; Lei et al., 2013; Wei et al.,
2013; Li M. et al., 2018), maize (Inghelandt et al., 2019), wheat
(Mason et al., 2010; Pinto et al., 2010; Paliwal et al., 2012; Lopes-
Caitar et al., 2013; Sharma et al., 2017), chickpea (Paul et al.,
2018), cowpea (Pottorff et al., 2014), Brassica (Branham et al.,
2017) and tomato (Wen et al., 2019). Marker assisted selection
can be used to transfer heat tolerant QTLs/genomic region to
the elite but heat stress sensitive genotypes if genetic maps with
sufficient marker density are available (see Jha et al., 2014). The
approach has been successfully employed in rice (Ye et al., 2012;
Shirasawa et al., 2013), wheat (Pinto et al., 2010; Bennett et al.,
2012; Bonneau et al., 2013) and tomato (Grilli et al., 2007)
to transfer QTLs governing heat tolerance. Considering potato,
Trapero-Mozos et al. (2017) discussed the scope of introgression
of HSc70 allelic variant contributing toward enhancing yield
under heat stress into high yielding potato cultivars through
marker assisted breeding for improving heat tolerance in potato.
Advent of improved sequencing technologies that allow faster
sequencing of genomes at lower costs led to generation of profuse
SNP markers that enabled genome-wide association studies
(GWAS) for elucidating novel genomic regions controlling heat
stress tolerance. GWAS for identifying heat stress tolerance
genomic regions have been conducted in rice (Lafarge et al.,
2017), maize (Yuan et al., 2019), wheat (Maulana et al., 2018),
barley (Cantalapiedra et al., 2017), pea (Tafesse et al., 2020),
chickpea (Thudi et al., 2014; Jha et al., 2018; Varshney et al., 2019),
and in Brassica (Rahaman et al., 2018).

TRANSCRIPTOMICS

Previously cDNA-AFLP and microarrays were employed for
identifying heat tolerance genes in various crop plants (Bita et al.,
2011; Johnson et al., 2014). After the advent of crop-specific gene
chips, microarrays became the method of choice for estimating
changes in gene expression upon exposure to abiotic stress e.g.,
Gene Chip wheat genome array in wheat (Qin et al., 2008),
Affymetrix GeneChip R© Tomato Genome Array in tomato (Frank
et al., 2009), Affymetrix 22K Barley 1 Gene Chip microarray in
barley (Mangelsen et al., 2011) and Brassica 95k EST microarray
in Brassica (Yu et al., 2014). Microarray-based analysis by
Johnson et al. (2014) provided insights into various genes
involved in heat tolerance in sorghum. Major revolution in our
understanding of genes involved in heat stress tolerance occurred
after the advent of modern DNA sequencing technologies
that allowed sequencing of whole transcriptomes, a technique
called transcriptomics/transcriptome sequencing/whole genome
transcriptome sequencing/whole genome expression profiling.
Transcriptomics allowed identification of various heat tolerant
candidate genes with greater precision in rice (González-Schain
et al., 2016; Mangrauthia et al., 2016; Fang et al., 2018),
wheat (Liu et al., 2015), maize (Shi et al., 2017), chickpea
(Agarwal et al., 2016), and soybean (Gillman et al., 2019).
Transcriptome analysis of contrasting heat tolerant and sensitive
lines led to identification of 35 differentially expressed transcripts
between the contrasting rice lines, 21 of which were functionally
validated (Liao et al., 2015). The study suggested involvement
in oxidation-reduction, metabolic activity, defense response and
photosynthesis activity in heat tolerance (Liao et al., 2015). Zhao
et al. (2018) explored several Hsp20 family genes involved in
heat stress response across the whole genome in potato. A total
of 14 Hsp20 genes displaying up-regulatory role under heat
stress in potato was confirmed through real-time quantitative
PCR. RNA-seq analysis of maize seedling treated with heat
stress unveiled myriads of up and down regulated genes
related to photosynthesis, protein synthesis and biosynthesis of
various metabolites including zeatin, brassinosteroids (Frey et al.,
2015; Shi et al., 2017). Further, Zhao et al. (2019) unearthed
the involvement of 5,400 non-additive genes specific to heat
stress through transcriptome analysis of parental lines and F1
hybrid maize seedlings under heat stress conditions. RNA-seq
technology not only identified the genes for heat tolerance but
also the non-coding RNAs that were involved in regulating heat
stress responses in various crops (Wang et al., 2011; Xin et al.,
2011; Yu et al., 2013; Mangrauthia et al., 2017).

PROTEOMICS

Gene expression enhanced our understanding of mechanisms of
heat stress tolerance significantly, however, gene transcripts do
not directly influence plants’ responses to stresses. Instead the
proteins/enzymes, the gene products, modify plants’ metabolite
pool in response to external stimulus. To understand better, the
mechanisms of stress tolerance, studies of the proteome, i.e.,
entire set of proteins in a cell or organ were initiated. Prior to
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TABLE 1 | Few selective heat-tolerant genotypes identified for various crops involving various traits (details in the text).

Crop Traits used Screening method Promising heat-tolerant genotypes Country References

1. Cereals

Barley
(Hordeum
vulgare L.)

Stay green trait Field experiments (> 40◦C) L6 and L8 and L3 and L10 Iran Bavei et al., 2011

Chlorophyll fluorescence Growth chamber (45◦C) Ig, Im, and Tz North Africa Oukarroum et al., 2016

Wheat
(Tritium
aestivum L.)

Stay green trait Field experiments (32◦C) CB367(BB#2/PT//CC/INIA/3/ALD“S,”
CB = 333(WL711/3/KAL/BB//ALD“S”and
CB335(WL711/CROW“S”//ALD#1/CMH7
7A.917/3/HI666PVN“S”)

Pakistan Rehman et al., 2009

Canopy temperature
depression

Field experiment (41◦C) HD 2932, HD 2864, HD 3095, HI 8703,
HUW 234

India Saxena et al., 2016

Rice (Oryza
sativa L.)

Pollen-based Growth cabinets
(35◦C, 38◦C)

N22 United
Kingdom

Jagadish et al., 2008

Cell membrane thermostability Phytotron (40◦C) F473 America Sanchez-Reinoso et al.,
2014

Maize
(Zea mays L.)

Plant height Field experiments (>40◦C) DTPYC9F119 India Debnath et al., 2016

Root system architecture Growth chamber (37◦C) H16, CML444, SC-Malavi United States Trachsel et al., 2010

2. Legumes

Chickpea
(Cicer arietinum)

Photosynthetic rate Field environment (25 to
40◦C)

Pusa 1103, Pusa 1003, KWR 108, BGM
408, BG 240, PG 95333, JG 14, BG

India Kumar et al., 2017

Cell membrane thermostability Growth chamber (40–45◦C) ICCV07110, ICCV92944, ICC1205 India Kumar et al., 2013

Lentil
(Lens culinaris
Medik.)

Biomass
Stomatal conductance
Chlorophyll fluorescence
Chlorophyll content
Sucrose
Oxidative stress and
antioxidants

Field study (>32/20◦C) IG2507, IG3263, IG3745, IG4258, and
FLIP2009

India Sita et al., 2017a

Cell membrane thermostability Growth chamber (34◦C) FLIP2009, Ranjan, Moitree, 14-4-1,
IC201710, IC208329

India Choudhury et al., 2012

Mungbean
(Vigna radiata L.)

Pollen-based Biomass
Chlorophyll fluorescence
Oxidative stress and
antioxidants

Field experiments
(>40/28◦C)

EC693357, EC693358, EC693369,
Harsha, and ML 1299

India Sharma et al., 2016

Common bean
(Phaseolus
vulgaris L.),

Chlorophyll fluorescence Growth chamber (42◦C) Ranit and Nerine RS Bulgaria Petkova et al., 2007

Seed weight
Seed number

Field conditions
(27/24◦C, 30/27◦C, and
33/30◦C)

Brio, Carson, G122, HB1880, HT38,
Venture

Switzerland Rainey and Griffiths,
2005

Alfalfa (Medicago
sativa)

Biomass Chlorophyll
fluorescence
Cell membrane thermostability

Greenhouse and growth
incubators (38/35◦C)

Bara310SC China Wassie et al., 2019

Soybeans
(Glycine max L.
Merr.)

Photosynthetic rate Field experiments
(36.5–38.6◦C)

IA3023 and KS4694 United States Djanaguiraman et al.,
2019

Metabolites Lab experiments
(36◦C/24◦C; 46/26◦C)

PI587982A South America Chebrolu et al., 2016

Cowpea
(Vigna unguiculate
L. Walp)

Seed weight Field studies (41/25◦C) H36, H8-9, DLS99 United States Ismail and Hall, 1999

Seed number Greenhouse conditions,
(36/27◦C)

B89-600 and TN88-63 United States Ehlers and Hall, 1998

3. Oil seed crops

Indian Mustard
(Brassica juncea L)

Plant height Field conditions (34◦C) BPR-538-10, NRCDR-2, RH-0216 India Chauhan et al., 2009

Canola
(Brassica napus)

Pollen-based Field studies (10–35◦C) Kadore, ARC98007, NPZ0591RR, and
DSV06200

United States Singh et al., 2008

Root system architecture Growth chamber (32◦C) Invigor 5440 Canada Wu et al., 2017

Peanut
(Arachis
hypogaea L.),

Carbon isotope discrimination Polytunnels (40/28◦C) Spanish botanical type United
Kingdom

Craufurd et al., 1999

Peanut
(Arachis hypogea)

Heat shock proteins Controlled environment
(50◦C)

ICGS 76, COC038, COC068, COC050,
COC041

United States Selvaraj et al., 2011

(Continued)
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TABLE 1 | Continued

Crop Traits used Screening method Promising heat-tolerant genotypes Country References

Cotton
(Gossypium
hirsutum L.)

Cell membrane
thermostability

Field conditions (>44◦C) NIA-80, NIA-81, NIA-83, NIA-84,
NIA-M-30, NIA-M31, NIA-HM-48,
NIA-HM-327, NIA-H-32, NIA-HM-2-1,
NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342,
CRIS-134, NIAB-111 and check variety
Sadori

Pakistan Abro et al., 2015

Chlorophyll fluorescence Green house (30 and 40◦C) DP393, VH260 and DP 210 B2RF Africa Van der Westhuizen
et al., 2020

4. Vegetable
crops

Potato (Solanum
tuberosum L.)

Heat shock proteins Growth chamber (40◦C) Norchip, Desiree Baltimore Ahn et al., 2004

Tomato
(Solanum
lycopersicum L.)

Pollen-based Field conditions
(39.24/24.42◦C)

Pusa Sadabahar, FLA-7171, NDTVR-60 Japan Srivastava et al., 2012

Sucrose Growth chambers (31/25◦C)
or Greenhouses (32/26◦C)

FLA 7516, Hazera 3018, Hazera 3042,
and Saladate

Israel/United
States

Firon et al., 2006

Cabbage
(Brassica species)

Metabolites Control environment
(25–35◦C)

Yoshin, Kenshin and full white Japan Hossain et al., 1995

Cucumber
(Cucumis
sativus L.)

Cell membrane
thermostability

Growth room (40/32◦C) L-3466, Desi Cucumber Pakistan Ali et al., 2019

proteomics, proteins suspected to play role in heat tolerance were
analyzed by MALDI TOF MS/MS analysis, e.g., rice (Han et al.,
2009; Jagadish et al., 2010; Liao et al., 2014). Further advances
in proteomics strengthen our understanding of identification of
the proteins that confer thermotolerance in plants. Proteomics
analysis of two contrasting rice genotypes, N22 (tolerant) and
Gharib (sensitive), showed that heat tolerance of N22 was due
to higher capability of mediating renaturation of stress damaged
proteins, higher efficiency in repairing ribosomal protein, higher
upregulation of proteins involved in calcium signaling and
phytohormone synthesis and protein modifications under high
night temperature at early grain filling stage (Shi et al., 2013).
The functional role of proteins that contribute to heat tolerance
ranges from oxidation-reduction, cellular metabolic activity to
defense responses (Lu et al., 2017; Zhang et al., 2017). In this
context, Zhang et al. (2017) identified various proteins by analysis
of grains of contrasting heat tolerant rice lines by employing
isobaric tags for relative and absolute quantitation (iTRAQ)
methods (Zhang et al., 2017). Similarly, by employing iTRAQ
technique, Lu et al. (2017) identified 258 heat responsive proteins
from wheat leaf, most of which were involved in chlorophyll
synthesis, carbon fixation and redox regulation under heat stress.
Various proteins such as HSP, those related to anti-oxidant
mechanism, and glycolysis were involved in adaption of grape
to heat stress as revealed through iTRAQ analysis (Liu et al.,
2014). Proteomics analysis of ethylene pre-treated tomato pollen
by LC-MS/MS suggested that various proteins help in protecting
pollen development and function through higher abundance
of protein synthesis and upregulating stress protecting proteins
that maintain cellular redox state under heat stress (Jegadeesan
et al., 2018). Proteomics analysis by 2-DE technique allowed
identification of important heat shock proteins viz., HSP26,
HSP16.9, and unknown HSP/Chaperonin contributing to heat

stress tolerance in maize (Abou-Deif et al., 2019). Considering
contributory role of proteins adapting roots under heat stress,
Valdes-Lopez et al. (2016) reported the involvement of both
up and down regulatory proteins contributing to heat tolerance
in soybean root. Recently, proteomics analysis deduced that
protein phosphorylation and protein acetylation could regulate
heat tolerance by modulating photosynthesis protein in grape
(Liu et al., 2019). The proteins involved in heat tolerance
elucidated through proteomics analysis could serve as biomarkers
for identifying heat tolerant cultivars in various crop plants.
Participatory role of miR156 targeting SPL transcription factor
in A. thaliana (Stief et al., 2014), miRl60, miRl66, and miRl67 in
wheat and barley (Xin et al., 2010), IbmiR397 targeting laccase
gene in sweet potato (Yu et al., 2020) controlling heat stress
response are worth mentioning.

METABOLOMICS

Metabolomics, the study of metabolites in a cell or organ, enhance
our understanding of novel metabolites that contribute to plant
adaptation to heat stress (Bokszczanin and Fragkostefanakis,
2013). Metabolomics have unraveled the key metabolites ranging
from sugars, proteins and lipids participating in key biological
processes to anti-oxidants and defense molecules in response to
heat stress (Li T. et al., 2015; Chebrolu et al., 2016; Muhlemann
et al., 2018; Salvi et al., 2018). Metabolomics at specific plant
stages viz., seed germination, vegetative, reproductive, grain
formation and grain filling have broadened our understanding
of metabolites involved in heat stress responses at different
development stages (Wang et al., 2015; Mangrauthia et al.,
2016; Spicher et al., 2016; Templer et al., 2017; Muhlemann et al.,
2018; Qu et al., 2018; Thomason et al., 2018). Metabolomics
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provided novel insights into the role of various lipids viz.,
plastidic glycerolipids, oxidized glycerolipids in regulating heat
stress responses in wheat leaves (Narayanan et al., 2016),
that of α-tocopherol and plastoquinone in maintaining the
photosynthesis apparatus in tomato under heat stress (Spicher
et al., 2016) and that of galactinol in minimizing excessive
ROS activity in chickpea under heat stress (Salvi et al., 2018).
Metabolomics also emphasized the role of sugars in anthers
such as glucose−6−P, fructose−6−P, glucose, maltose and
myo−inositol in improving heat stress acclimation in N22
(heat-tolerant) rice genotype (Li X. et al., 2015). Likewise, the
ameliorative role of various anti-oxidant phenolic compounds
viz., flavonoids, flavonols, tocopherols in heat tolerance by
preventing ROS mediated negative effect on pollen tube
germination in tomato (Muhlemann et al., 2018) and also during
seed development in soybean (Chebrolu et al., 2016) are other
examples of the use of metabolomics in improving knowledge
of heat stress tolerance mechanisms. At post anthesis stage,
metabolites viz., drummondol, anthranilate appear to regulate
heat stress response in wheat flag leaves (Thomason et al.,
2018). The studies pinpoint that metabolomics along with system
biology approaches could significantly enhance significantly our
understanding of various metabolites produced in response to
heat stress (Janni et al., 2020) and would be a vital tool to develop
heat tolerant crops in agriculture.

CONCLUSION AND FUTURE
PERSPECTIVES

The past few decades have seen considerable developments
in genetics, biochemical, genomics, transcriptomics, proteomics
and metabolomics approaches to enhance the understanding
of heat stress tolerance. However, basal thermotolerance
remains the major tool to develop agronomically superior heat
tolerant cultivars for agricultural crops. Basal thermotolerance
is primarily evaluated by exposing small or large sets of
germplasm (accessions, cultivars, wild relatives) under controlled
(laboratory, screen/greenhouse) or natural field environments to
stressful temperatures. These tests have identified several sources
of heat tolerance in various crop gene pools and landraces, which
may act as potential candidates/donors of heat stress tolerance for
developing heat tolerant cultivars using conventional or modern
breeding approaches (Table 1). In some instances, heat tolerant
genotypes have been directly released as cultivars (as in Chickpea)
owing to their agronomic superiority. In addition to heat stress
tolerance, contrasting genotypes are also being evaluated for
diverse traits related to phenology, growth, physiology and
biochemistry, genes, and reproductive biology. Of the several
traits being evaluated for heat stress tolerance in crops, the
majority of studies have indicated pollen function to be highly
sensitive to heat stress, thus making it one of the vital selection
traits for heat tolerance. Evaluation of thousands of germplasm
or progeny lines for several traits associated with heat tolerance
in a short span of time is needed to fasten the breeding for heat
tolerance. High-throughput phenotyping that allows choosing
important traits as selection criteria for heat tolerance can

facilitate identification of genotypes for heat stress tolerance
as well as other desirable agronomic traits in a short span of
time but high throughput phenotyping requires high investment
and is available with only a few laboratories around the world.
In addition to it, remote sensing tools (UAVs with spectral
and thermal imaging camera) can be effectively deployed under
realistic field environments to screen thousands of germplasm
or progeny lines.

Plant heat tolerance being a quantitative trait is highly
influenced by G × E interactions and genetic inheritance of heat
tolerance remains challenging. Large scale DNA-based marker
development during the last decade led to mapping of QTLs
linked to heat tolerance in various crops (Jha et al., 2014; Janni
et al., 2020). Advances in sequencing technologies especially,
next generation sequencing (NGS), genotyping by sequencing
(GBS), and other high throughput genotyping platforms have
facilitated narrowing down of the heat tolerance QTL regions for
analysis of candidate genes (Xu et al., 2017; Kilasi et al., 2018;
Inghelandt et al., 2019; Tadesse et al., 2019). Given the huge
number of novel SNPs developed recently and GWAS in large
set of global crop germplasm, it became possible to identify novel
haplotypes/genomic regions controlling heat tolerance (Paul
et al., 2018; Varshney et al., 2019; Khan et al., 2020; Weckwerth
et al., 2020) and allowed for the assessment of genetic diversity
at nucleotide-scale. High throughput phenotyping coupled with
advanced imaging devices, unmanned vehicles and machine
learning, deep learning approaches and molecular genetics tools
can further enhance the accuracy of selection of genomic regions
associated with heat tolerance. The developments in marker
and sequencing technologies are expected to allow genome wide
marker profiling facilitating genomic selection for heat tolerance
(Tricker et al., 2018; Inghelandt et al., 2019) and thus, rapid
breeding for the development of varieties with novel genetic
combinations. Similarly, advances in proteomics, transcriptomics
and metabolomics will further unravel the complexity of heat
stress tolerance in crops by identifying missing links in the
current information. A combination of these approaches could
allow for the quantifying of plant heat stress responses, spatially
and temporally, at a large scale, thus narrowing the “genotype-
phenotype gap” (Fahlgren et al., 2015; Singh A. et al., 2015; Singh
A. K. et al., 2018; Pinto et al., 2016). Corresponding to breeding
approaches, current developments in the spatial and temporal
expressions of engineered genes or pathway engineering by
the targeted editing of genomes using CRISPR–Cas technology
can be used for development of heat tolerant designer crops.
A better knowledge of plant cellular mechanisms associated
with heat tolerance and increased yields would be vital to drive
essential gains in crop improvement, which can be greatly assisted
by exploring the genetic diversity in heat tolerance, and put
into practice by genome-scale breeding, precisely done gene
engineering and better agronomic management practices.
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Abstract
Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence 
of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other 
growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will 
be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, 
and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic 
processes contributing to general growth and development will be restricted, along with the production of reactive oxygen 
species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging 
mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help dis-
tinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational 
levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of vari-
ous crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts 
to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular 
breeding approaches have great potential in this direction.

Keywords Water stress · High temperature · Cereals · Legumes · Genomics · Proteomics · Metabolomics

Introduction

Rising annual mean temperatures, modified precipitation 
patterns, and emerging drought stress in many regions affect 
agriculture at the global level by limiting crop yield potential 
(Awasthi et al. 2014). Drought and heat stress are two key 
factors confining crop productivity (Barnabás et al. 2008). 
Drought stress occurs when plant available water is very 
low, exposing plants to unfavorable growth conditions (Zhu 
2001; Egert and Tevini 2002). Heat stress is often defined 
as the increase in temperature beyond a threshold level for 
an extended period that may cause irreversible damage and 
inhibit plant growth and development (Wahid 2007; Bita 
and Gerats 2013). Drought often occurs with heat, espe-
cially during summer (Lamaoui et al. 2018), causing severe 
damage to plants (Sehgal et al. 2018). Decades of research 
have significantly improved our understanding of how plants 
encounter drought or heat stress individually in the field, 
and how these stresses affect plant growth and development 
(Rennenberg et al. 2006; Fahad et al. 2017a, b; Lamaoui 
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et al. 2018). With the frequency of combined drought/heat 
stress estimated to increase due to climate change (IPCC 
2014), it is vital to study the effects of this stress combina-
tion to enhance the tolerance of various crops and minimize 
yield losses.

Most studies in the last decade have focused on crop 
responses to a single stress (Chew and Halliday 2011; Sid-
diqui et al. 2015). However, crops are often subjected to a 
combination of stresses in the field (Mittler 2006; Suzuki 
et al. 2014; Mahalingam and Bregitzer 2019; Qaseem et al. 
2019a, b). Drought and heat stress are interlinked, with the 
combined stress causing more crop losses than individual 
stresses (Shah and Paulsen 2003; Dreesen et al. 2012). The 
effect of combined drought/heat stress has been studied in 
model plants and crops at different developmental stages 
at the agronomic (Mahrookashani et al. 2017; Lawas et al. 
2018a), physiological (Pradhan et al. 2012; Mahrookashani 
et al. 2017), molecular (Rizhsky et al. 2002; Zhou et al. 
2016), and metabolic (Rizhsky et al. 2004; Templer et al. 
2017; Lawas et  al. 2019) levels. In nature, combined 
drought/heat stress results in a unique plant response that 
differs from individual stresses (Zandalinas et al. 2018). The 
extent of plant damage depends on the severity and duration 
of the stresses and the growth stage exposed to the stresses. 
Crop plants at the reproductive stage are more susceptible 
to combined drought/heat stress than individual stresses 
(Barnabás et al. 2008; Zandalinas et al. 2016). Studies have 
also reported cultivar-specific responses, enabling the iden-
tification of cultivars with superior tolerance to combined 
drought/heat stress (Awasthi et al. 2017; Athar et al. 2019; 
Zhou et al. 2020). In general, combined drought/heat stress 
adversely affects plant phenology and physiology, including 
growth, chlorophyll content, leaf photosynthesis, grain num-
ber, spikelet fertility, grain-filling duration, and grain yield 
(Shah and Paulsen 2003; Barnabás et al. 2008; Prasad et al. 
2011; Perdomo et al. 2017; Sehgal et al. 2018).

Combined drought/heat stress can severely affect the yield 
of staple food crops, including legumes such as soybean 
(Glycine max), chickpea (Cicer arietinum) and lentil (Lens 
culinaris) (Awasthi et al. 2014; Sehgal et al. 2017) and cere-
als such as wheat (Triticum aestivum L.) (Prasad et al. 2011), 
maize (Zea mays L.) (Cairns et al. 2013) and rice (Oryza 
sativa L.) (Lawas et al. 2018b). The yield losses are mainly 
attributed to changes in plant water balance (Machado and 
Paulsen 2001) and disruptions in photosynthesis (Rizhsky 
et al. 2002), sucrose metabolism and carbohydrate assimila-
tion (Awasthi et al. 2014), increased oxidative damage, and 
impaired nitrogen metabolism and fixation (Trachsel et al. 
2016). Crop plants such as maize and wheat, which tolerate 
heat or drought as individual stresses, do not necessarily 

endure combined drought/heat stress (Cairns et al. 2013; 
Qaseem et al. 2019a, b).

It is important to understand the various plant mecha-
nisms at different organizational levels, including growth, 
physiology, metabolites (metabolomics), proteins (proteom-
ics), and genes (genomics), to develop strategies for design-
ing crops with superior tolerance to drought and heat stress. 
Understanding crop responses, especially at the ‘omics’ 
level, will enhance the quality and meaning of the derived 
biological information to develop stress-resilient cultivars. 
Here, we present updated information on how various traits 
involving growth, physiology, genes, proteins, and metabo-
lites are affected in various crops under combined drought/
heat stress. We then identify various strategies for devel-
oping crops resilient to combined drought/heat stress. The 
general effects of combined drought/heat stress at various 
organizational levels are presented in Fig. 1.

Growth

Growth can be assessed using various vegetative traits, 
including plant height, branching, leaf area, and biomass. 
Combined drought/heat stress reduces plant growth, accel-
erates senescence, and causes premature death, relative to 
heat or drought stress alone (Machado and Paulsen 2001) in 
various crops. For example, combined drought/heat stress 
decreased plant height and biomass in lentil (Lens culinaris; 
Sehgal et al. 2017; Rajendran et al. 2020), maize (Athar 
et al. 2019), potato (Solanum tuberosum L.; Handayani and 
Watanabe 2020), Sorghum bicolor(Machado and Paulsen 
2001) and wheat (Triticum aestivum; Farooq et al. 2017; 
Qaseem et al. 2019a, b) (Table 1). Combined drought/heat 
stress severely inhibited various growth traits (leaf area, 
leaf number, stomatal dimensions) in 21-day-old tomato 
(Solanum lycopersicum) seedlings (Zhou et al. 2017) and 
adult plants (Zhou et al. 2019). Similarly, combined stress 
reduced plant height and biomass in chickpea (Awasthi et al. 
2014, 2017), shoot dry weight in faba bean (Siddiqui et al. 
2015), common bean (Seidel et al. 2016), maize (Cairns 
et al. 2013), and barley (Mahalingam and Bregitzer 2019). 
Rapid leaf senescence was reported in wheat and sorghum 
(Machado and Paulsen 2001) exposed to combined drought/
heat stress. Combined drought/heat stress accelerated leaf 
senescence, leaf rolling, and cuticular wax deposition and 
decreased plant growth (Machado and Paulsen 2001). These 
findings indicate that combined drought/heat stress seriously 
affects various growth-related traits, compared to individ-
ual stresses, which can be used to evaluate contrasting crop 
genotypes for selection/screening for resilience to combined 
drought/heat stress. For instance, in a recent study, 162 lentil 
(Lens culinaris Medikus) accessions screened for tolerance 
to heat stress and combined drought/heat stress at two field 
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locations in Morocco revealed that plant height, biomass, 
and the number of primary, secondary and tertiary branches 
per plant could serve as vital indicators for combined stress 
tolerance (Rajendran et al. 2020).

Root system architecture

Root system architecture (RSA) is an important plant agro-
nomic trait assisting plant development and the acquisition 
of available soil nutrients and water (Koevoets et al. 2016; 
Morris et al. 2017). RSA plays a pivotal role in improving 
plant adaptation and plasticity under various stresses, espe-
cially water scarcity (Ye et al. 2018). Drought affects root 
function by altering cell water permeability and influencing 
root growth and RSA (Fahad et al. 2017a, b), as reported in 
several plant species, including wheat (Fang et al. 2017), 
maize (Li et al. 2015a, b), rice (Cairns et al. 2004), and 
chickpea (Kashiwagi et al. 2005). Root function is inhibited 
due to alterations in hydraulics (cell water permeability), 
which disrupts mineral uptake (Garg 2003). Plants exposed 
to mild drought can increase primary root growth to move 

into deeper layers or enhance the surface area of shallow 
roots, and change RSA to absorb more water and nutrients 
(Lynch and Brown 2001; Fahad et al. 2017a, b).

Heat stress inhibits root proliferation, in terms of number, 
mass and growth, as reported for canola (Wu et al. 2017) 
and maize (Trachsel et al. 2010),which eventually restricts 
water and nutrient transport to shoots (Huang et al. 2012). 
In warmer environments, plant water requirements increase 
due to water loss from evapotranspiration and reduced water 
uptake by roots, resulting in water deficit stress (Heckathorn 
et al. 2013). Water uptake occurs either through aquapor-
ins (Cabañero et al. 2004) or the plasma membrane involv-
ing diffusion (Maurel et al. 2015). Heat stress inhibits the 
expression of aquaporins and increases membrane rigidity to 
decrease water uptake (Iglesias-Acosta et al. 2010; Ionenko 
et al. 2010). Root growth is inhibited in warmer environ-
ments, reducing macro- and micro-element uptake in tomato 
(Giri et al. 2017), and maize hybrids (Hussain et al. 2019a, 
b).

There are relatively few studies on the effect of combined 
drought/heat stress on RSA. Under combined drought/heat 
stress, a deeper root system provides more tolerance than 

Fig. 1  Simultaneous occurrence of drought and heat stress signifi-
cantly affects the various traits (morphological, physiological, bio-
chemical and genes) of the plants. Severity of stress depends on the 
timing, duration and intensity of stress. Visible damages in the plants 
include reduction in plant height, leaf area, number of branches, root 
growth, total flowers, pods and biomass, acceleration of leaf senes-
cence, chlorosis and stomatal density. At physiological level, relative 

leaf water content, stomatal conductance, chlorophyll concentration 
and photosynthetic traits decrease canopy temperature depression, 
electrolyte leakage, respiration and oxidative stress increase. Plants 
adapt themselves under such conditions by modulating the expres-
sions of antioxidants, osmolytes, antioxidants and stress proteins. All 
these traits synergistically affect the yield and resulted in major agro-
nomic losses
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shallow roots (Jiang and Huang 2001a, b; Vescio et  al. 
2021). A deeper root system has great potential for improv-
ing crop tolerance to combined drought/heat stress. Vescio 
et al. (2021) adopted a distinct approach for studying growth 
and morphological parameters of different root types (pri-
mary, primary lateral, and seminal roots) in maize seedlings 
under combined heat (32 °C) and drought (30% field capac-
ity) stress. The maize root system modifies specific root 
types to tackle combined drought/heat stress. Among the 
11 traits studied for primary roots, branching density, root 
length ratio, root mass ratio, and tissue density increased 
under combined stress. Among primary lateral roots, mor-
phological traits such as length, surface area, fitness, root 
length ratio, and average length increased compared to the 
control. Seminal roots were less affected than the other root 
types, with only fresh weight decreasing compared to the 
control. Similar studies have been reported in grasses, which 
could provide useful insights into the potential responses 
of crops to combined drought/heat stress. For example, tall 
fescue (Festuca arundinacea L.) and perennial ryegrass 
(Lolium perenne L.) exposed to heat (35 °C day/30 °C night) 
and drought (induced by withholding irrigation) in growth 
chambers for 35 days drastically reduced root dry weight 
in all the soil layers (0–20, 20–40, and 40–60 cm) but to a 
greater extent in 0–20 cm, and reduced root viability more 
than heat stress alone (Jiang and Huang 2001a, b). Tall fes-
cue had more root viability and root dry weight in all soil 
layers than perennial ryegrass, which would help to with-
draw more water, favor transpirational cooling, and maintain 
higher photosynthetic activity (Jiang and Huang 2001a, b). 
Bonos and Murphy (1999) reported that tolerant cultivars 
of Kentucky bluegrass produced 19% and 65% more roots 
in the 15–30 cm and 30–40 cm soil layers and had a 5 °C 
cooler canopy temperature than sensitive cultivars under 
combined drought/heat stress. These root behaviors are 
important in combating the effects of combined drought/heat 
stress and need to be addressed and integrated into breeding 
approaches to develop tolerant varieties.

Phenology

Phenology is a good indicator of stress sensitivity in crops 
(Sabagh et al. 2020); however, there are few reports on the 
effect of combined drought/heat stress on this trait. In chick-
pea grown in the field, combined drought/heat stress mark-
edly reduced days to podding and maturity and flowering 
and podding durations, especially in heat- and drought-sen-
sitive genotypes (Awasthi et al. 2017). In a glasshouse study 
on wheat genotypes, heat stress reduced days to anthesis 
(DA) and days to maturity (DM) by 16% and 20%, respec-
tively, while drought stress reduced DA and DM by 10% and 
14%, respectively, and combined stress reduced DA and DM 

by 25% and 31%, respectively (Qaseem et al. 2019a, b). In a 
field study on lentil, combined drought/heat stress markedly 
reduced flowering and podding durations and DM (Sehgal 
et al. 2017). A more recent study on lentil reported that com-
bined drought/heat stress reduced crop duration more than 
individual stresses (Rajendran et al. 2020). In maize (Zea 
mays L.), combined drought/heat stress significantly reduced 
average DA, relative to drought alone (Kumar et al. 2020). 
Thus, the greater inhibition of yield traits under combined 
drought/heat stress can be attributed to accelerated phenol-
ogy, which can decrease flower, pod, and seed numbers, 
and may serve as vital selection criteria for combined stress 
tolerance.

Reproductive processes

Timing of the stress during different developmental stages 
is critical. During flowering, pollen is particularly sensi-
tive to heat stress, especially when combined with drought 
(Ruan et al. 2010; Jiang et al. 2019). Combined drought/heat 
stress during the reproductive stage is more detrimental to 
crop yields than the vegetative stage (Barnabás et al. 2008), 
particularly for male reproductive components (Cairns 
et al. 2013). There is emerging evidence of the sensitivity 
of female reproductive cell and organ development to heat 
or drought stress per se in sorghum (Jain et al. 2007), rice 
(Jagadish et al. 2010), maize (Djanaguiraman 2018), wheat 
(Prasad et al. 2011; Onyemaobi et al. 2017), tomato (Pan 
et al. 2018), and chickpea (Kaloki et al. 2019), with little 
information on the combined effect of these two stresses. 
According to a recent study in winter wheat, combined high 
temperature (32/24 °C) and water withdrawal for five days 
at gametogenesis altered plant phenology, reduced pollen 
viability, and modified pistil morphology and anatomy, 
which reduced fertility and yield in the sensitive genotype 
(Fábián et al. 2019). The inhibited functionality of female 
and male reproductive parts accounted for 34% and 66%, 
respectively (Fábián et al. 2019). These findings suggest that 
besides male functionality, stigma functionality and fertility 
are markedly affected under combined drought/heat stress 
contributing to flower abortion. Further research is needed 
on how this stress combination affects reproductive develop-
ment and function in various crops.

Seed filling

The seed filling process is a critical growth stage in grain 
crops, and includes various biochemical processes related 
to leaf assimilation and the partitioning of carbohydrates, 
proteins, and lipids in developing seeds (Barnabás et al. 
2008; Awasthi et al. 2014; Farooq et al. 2017; Sehgal et al. 
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2017). Seed filling relies on the transfer of current assimi-
lates directly to seeds and their reallocation from vegeta-
tive reserve pools either pre- or post-anthesis (Yang and 
Zhang 2006). Seed filling processes and the accumulation of 
reserves in developing and maturing seeds are highly sensi-
tive to environmental changes, impacting the qualitative and 
quantitative traits of the final yield (Yang and Zhang 2006). 
Carbohydrates (sucrose, starch, and soluble sugars) are the 
primary component of seeds. Sucrose is mainly exported 
to seeds from the leaves, with some synthesized in seeds 
(Weschke et al. 2000), which is metabolized into glucose and 
fructose; glucose is involved in starch formation through var-
ious seed enzymes. Drought and heat stress can obstruct the 
accumulation of various seed constituents, fundamentally 
starch and proteins (Behboudian et al. 2001; Asthir et al. 
2012; Farooq et al. 2017), by inhibiting enzymatic processes 
of starch (Ahmadi and Baker 2001) and protein (Triboï et al. 
2003) synthesis. For example, in lentil seeds, heat stress 
inhibited the enzymes related to sucrose and starch metabo-
lism (Sehgal et al. 2017), which could further limit sucrose 
import into seeds. Sucrose and starch synthesis enzymes are 
also sensitive to combined drought/heat stress in the seeds 
of other plants. For instance, in wheat exposed to combined 
drought/heat stress, the rate of transport of non-structural 
carbohydrates in endosperm tissue diminishes severely 
(Wardlaw 2002; Plaut et al. 2004). Combined drought/heat 
stress severely reduced starch accumulation and thus starch 
synthesizing enzymes, relative to individual stresses, in 
chickpea (Awasthi et al. 2014) and lentil (Sehgal et al. 2017), 
resulting in shriveled seeds. Increased β-amylase activity has 
been reported under high temperature (Kaplan et al. 2006), 
decreasing starch reserves. However, the reducing sugars 
produced due to increased amylase activity during stress can 
assist plants to adapt to environmental stresses (Anderson 
and Kohorn 2001).

Plant hormones, such as abscisic acid and cytokinins, 
play an important role in regulating seed filling (Brenner 
and Cheikh 1995). These phytohormones are involved in 
determining sink size and strength and the ability of seeds 
to accumulate biomass (Thakur et al. 2010). For example, 
auxins, gibberellins, and abscisic acid mediate cell division, 
enlarge endosperm cells, and regulate the direction and rate 
of assimilate flow from source to sink tissues (Hansen and 
Grossmann 2000). No studies have assessed the endogenous 
levels of phytohormones in seeds of plants subjected to com-
bined drought/heat stress to identify the biochemical mecha-
nisms affecting seed filling.

Yield

Yield traits, mainly seed number, seed weight, and seed 
filling, are the most affected traits in various crop species 
in response to combined drought/heat stress. Even a short 
period of combined drought/heat stress during the reproduc-
tive stage adversely affects crop yields (Sehgal et al. 2018). 
For example, yield losses of up to 50% were reported in 
wheat exposed to combined drought/heat stress (Lamaoui 
et  al. 2018). Combined drought/heat stress (36/30  °C; 
30% field capacity) applied in the glasshouse from head-
ing to maturity in wheat decreased grain yield by 56%, 
grain number/spike by 40%, harvest index by 41%, spikelet 
number/spike by 20%, and spike length by 30%, relative to 
the control (Qaseem et al. 2019a, b; Table 1). In Austral-
ian durum wheat (Triticum turgidum), grain yield declined 
by 39% under water deficit stress, 45.5% under heat stress, 
and 55% under combined heat and water deficit stress (Liu 
et al. 2019). In rice, combined drought/heat stress (30/27 °C; 
water withheld for two weeks) imposed at the seedling, 
tillering, or reproductive stage reduced yield to zero in all 
seven cultivars (Mukamuhirwa et al. 2019). Combined heat 
(38/30 °C) and drought (50% field capacity) stress severely 
reduced various yield traits (ears/plant, kernel rows/ear, ker-
nels/ear, 100 kernel weight, grain yield/plant, and harvest 
index) in two maize hybrids (Xida889 and Xida319) (Hus-
sain et al. 2019a, b).

In lentil, combined drought/heat stress (32/28 °C; 50% 
field capacity) from seed filling to maturity reduced seed 
size and quality in terms of seed starch reserves, storage 
protein, amino acids, and minerals, seed growth rate by 
44–60.2%, seed number/plant by 35–48.7%, and seed weight 
by 47–59%, compared with control conditions (Sehgal et al. 
2019). Similarly, in chickpea, combined drought/heat stress 
during seed filling decreased seed weight to 1.1–3.9 g/plant, 
relative to 5.3–6.0 g in the control (Awasthi et al. 2017). 
Elferjani and Soolanayakanahally (2018) evaluated the 
response of Brassica napus L. to high-temperature (29 °C) 
and water stress (30% field capacity), individually and com-
bined, from flowering to seed development in a controlled 
greenhouse. Seed yields declined by 31%, 85%, and 89% 
for plants exposed to drought, heat, and their combination, 
respectively, relative to the well-watered control plants. 
Severe reductions in yield traits due to combined drought/
heat stress during seed development indicate the critical 
sensitivity of this stage, which can be attributed to severe 
limitations in several cellular processes, especially related 
to the accumulation of various seed reserves.
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Physiological traits

Leaf water status and stomatal conductance

Leaf water status, measured as relative leaf water content 
(RWC), is a valuable measure of plant water status in terms 
of the physiological consequences of cellular water defi-
cit and is widely used for abiotic stress assessments (Zhou 
et al. 2017; Tani et al. 2019). Leaf RWC decreased rapidly 
under combined drought/heat stress in Camellia oleifera 
(Wang et al. 2015), tall fescue (Festuca arundinacea L.) and 
perennial ryegrass (Lolium perenne L.) (Jiang and Huang 
2001a, b), wheat (Jiang and Huang 2001a, b; Qaseem et al. 
2019a, b), sorghum (Machado and Paulsen 2001), potato 
(Handayani and Watanabe 2020), and tomato (Zhou et al. 
2019; Raja et al. 2020) (Table 1). A reduction in RWC due 
to combined drought/heat stress is attributable to a rapid 
decline in stomatal conductance. During heat stress, plants 
open their stomata to cool their leaves by transpiration; when 
heat stress is combined with drought stress, plants keep their 
stomata closed to reduce water loss, and leaf temperatures 
remain high (Zhang et al. 2010). Under combined drought/
heat stress, transpirational regulation and stomatal closure 
are possible survival strategies for plants; therefore, stomatal 
conductance is beneficial for assessing the effects of stress 
on plant water relations, carbon assimilation, and the ability 
to escape overheating (Nankishore and Farrell 2016). Dif-
ferences in the gaseous exchange rate through stomata can 
be recorded by a leaf porometer (Chandra et al. 2017). Fully 
opened stomata increase  CO2 diffusion, thus increasing the 
transpiration rate and photosynthetic efficiency of plants 
(Condon et al. 2007). Therefore, stomatal conductance (gs) 
is an important trait for determining the photosynthetic rate 
and connecting the global carbon cycle with carbon metabo-
lism in plants. There is a linear relationship between stoma-
tal conductance and temperature (Urban et al. 2017).

High stomatal conductance is correlated with high grain 
yield, which is a useful tool for the early identification of 
stress-tolerant genotypes. For instance, genetic variation 
in three tomato varieties (Nagcarlang, Hybrid 61, and 
Moskvich) under combined drought/heat stress (25–45 °C; 
20% field capacity) was examined in a greenhouse. After 
two days of stress, Hybrid 61 had higher stomatal conduct-
ance and lower leaf temperature than the other two varieties 
(Nankishore and Farrell 2016). A study on cotton demon-
strated that stomatal conductance is an informative indicator 
of genotypic differences in growth under combined drought/
heat stress (> 35 °C; 35% water depletion; Carmo-Silva et al. 
2012). Similarly, decreased photosynthetic efficiency due to 
a decline in stomatal conductance was noted in lentil geno-
types exposed to combined drought/heat stress (33/28 °C; 
50% field capacity) during seed filling in growth chambers 

(Sehgal et al. 2019). Stomatal conductance declined in all of 
the genotypes, relative to control plants, but drought-tolerant 
genotypes maintained higher stomatal conductance (26%) 
than sensitive genotypes under combined drought/heat stress 
(Sehgal et al. 2019). Reductions in leaf water status and sto-
matal conductance were also reported in Artemisia sieberi 
alba, an important Mediterranean plant, under combined 
drought/heat stress (37 °C; 50% field capacity) in a green-
house and tall fescue (Festuca arundinacea Schreb. cultivar 
Rembrandt) under combined stress (30/25 °C; 50% field 
capacity) in growth chambers (Yu et al. 2012). Thus, exam-
ining stomatal behavior under stress conditions is impor-
tant because it captures the mechanisms regulating the plant 
water status in response to changing environmental condi-
tions and can be used to assess stomatal acclimation. The 
stomatal conductance response under combined drought/
heat stress deserves attention as it provides a mechanistic 
model linking it with other physiological traits.

Cell membrane thermostability

Plant cell membranes play a significant role in maintain-
ing cell turgor pressure and physiological functions when 
subjected to various environmental stresses. Cell membrane 
stability has been used to differentiate plant tolerance and 
susceptibility to stresses (Blum and Ebercon 1981; Rah-
man et al. 2004). Electrolyte leakage has been used as a 
key parameter to estimate cell membrane stability (Hu et al. 
2010). An increase in electrolyte leakage suggests that 
membrane injury has occurred (Blum and Ebercon 1981). 
Drought stress damages leaf tissue (cell membranes) more 
than heat stress, with the damage increasing manifold under 
combined drought/heat stress. Membrane injury can occur 
due to the direct impact of high temperature and increased 
water loss from leaf tissue, impaired lipid–protein con-
figuration, leakage of essential ions, and damaged cellular 
function causing electrolyte leakage from the stressed tis-
sue (Conde et al. 2011). For example, in lentil, membrane 
damage increased more under combined drought/heat stress 
(33–60%) than drought (21–40%) or heat (14–30%) stress 
alone (Sehgal et al. 2017). In chickpea, membrane damage 
increased more under combined drought/heat stress (1.5–2.5-
fold) than drought (1.3–2.0-fold) or heat (1.2–1.8-fold) stress 
alone, with a greater impact on sensitive genotypes (Awasthi 
et al. 2017) (Table 1). Similarly, combined drought/heat 
stress markedly reduced membrane stability in chickpea 
(Kumar et al. 2012; Awasthi et al. 2014), lucerne (An et al. 
2014), sunflower and maize (Killi et al. 2017), Kentucky 
bluegrass (Poa pratensis L.) (Liu et al. 2008), and wheat 
(Grigorova et al. 2011a, b; Qaseem et al. 2019a). Membrane 
stability has been used extensively for assessing stress toler-
ance; thus, relatively heat-tolerant genotypes showed less 
membrane damage than heat-sensitive genotypes of lentil 
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(Sehgal et al. 2018) and chickpea (Awasthi et al. 2017). 
Heat-tolerant wheat cultivars had better membrane stabil-
ity than susceptible cultivars under combined drought/heat 
stress (Liu et al. 2008). A drought-tolerant lucerne geno-
type (AS801) had less membrane damage than a sensitive 
genotype (An et al. 2014). For perennial ryegrass (Poa prat-
ensis L.) and tall fescue (Festuca arundinacea L.), electro-
lyte leakage was more severe and earlier under combined 
drought/heat stress than individual stresses. Tall fescue had 
more membrane damage than perennial ryegrass and hence 
exhibited better tolerance to combined stress by maintaining 
higher photosynthetic rate, chlorophyll fluorescence (Fv/Fm), 
leaf RWC, cell membrane stability, and root growth, and 
lower electrolyte leakage than perennial ryegrass (Jiang and 
Huang 2001a, b).

A major cause of membrane damage is the generation of 
oxidative stress, which can be measured as malondialdehyde 
(MDA), a product of lipid peroxidation and hydrogen perox-
ide. The extent of lipid peroxidation has been used to assess 
the level of free radical damage to cell membranes (Scan-
dalios 1993). The hydroxyl-free radical attacks unsaturated 
fatty acids of lipids to induce lipid peroxidation, resulting 
in membrane damage (Okuda et al. 1991). Under combined 
drought/heat stress, intense membrane damage was linked to 
increased oxidative stress in sensitive genotypes of chickpea 
(Awasthi et al. 2017) and maize (Hussain et al. 2019a, b). 
Electrolyte leakage indicates a characteristic pattern of cel-
lular membrane damage under stress, as most stresses target 
cell membranes in the first instance. Therefore, it is generally 
accepted that maintaining membrane stability and integrity 
under stress conditions is a major component of stress toler-
ance. Various plant responses under stress, including antiox-
idant enzyme synthesis (Liu and Huang 2000; Sreenivasulu 
et al. 2000), membrane acyl lipid concentrations (Lauriano 
et al. 2000), water use efficiency (França et al. 2000; Saelim 
and Zwiazek 2000), stomatal resistance, osmotic potential, 
and leaf rolling index (Premachandra et al. 1989), are corre-
lated with electrolyte leakage. Therefore, electrolyte leakage 
or cell membrane thermostability is a valuable criterion for 
identifying stress-resistant cultivars in various plant species 
(Leopold et al. 1981; Stevanović et al. 1997) and a promis-
ing trait for selection against combined drought/heat stress.

Canopy temperature depression

Canopy temperature depression (CTD) is the variation 
between air temperature (Ta) and canopy temperature (Tc), 
which acts as an indirect measure of transpiration (Reynolds 
et al. 2001). A positive CTD value occurs when the canopy 
is cooler than the air (CTD = Ta − Tc). Under combined 
drought/heat stress, soil moisture does not adequately keep 
up with transpiration demands, decreasing stomatal con-
ductance and increasing canopy temperature (Balota et al. 

2008), thus increasing the CTD value. CTD is associated 
with increased water supply to plants due to deeper RSA 
(Pinto and Reynolds 2015). Some studies have reported a 
positive relationship between cooler canopy temperature 
and yield traits; for example, in wheat (Bahar et al. 2008), 
cotton (Carmo-Silva et al. 2012) and tomato (Nankishore 
and Farrell 2016). Therefore, CTD can be a strong meas-
ure for selecting better-performing genotypes under stress. 
For instance, in cotton, canopy temperature increased under 
combined drought/heat stress (> 36 °C; 35% irrigation), rela-
tive to the control; Pima S-6 (low Tc) and Monseratt Sea 
Island (high Tc) were identified as tolerant and sensitive 
genotypes, respectively, based on comparative CTD values 
(Carmo-Silva et al. 2012). Under combined drought/heat 
stress (25–42 °C; 20% field capacity), tolerant tomato culti-
var ‘Hybrid 61’ had a lower canopy temperature than sensi-
tive cultivar ‘Nagcarlang’ (Nankishore and Farrell 2016). 
CTD is easy to measure with an infrared thermometer. It 
is a vital indicator of plant responses to heat (Kumari et al. 
2013) and drought (Pinto and Reynolds 2015) (Table 1) and 
should be explored further, along with stomatal conduct-
ance or transpiration, under combined stress environments 
for development as a screening marker.

Chlorophyll and chlorophyll fluorescence

Drought and heat stress can induce leaf senescence, result-
ing in chlorophyll degradation and disorganization of pho-
tosynthetic apparatus (Matile et al. 1999), which hampers 
crop yield. Chlorophyll is the main pigment for photosyn-
thesis and is most sensitive to high temperatures (Berry 
and Bjorkman 1980) and drought stress (Oneto et al. 2016). 
High temperature destroys chlorophyll and damages plants 
by reducing the acceptance of light quanta (Zafar et al. 
2017). A study on genotypic variation in chickpea revealed 
that plants exposed to combined drought/heat stress lost 
more chlorophyll than those under drought or heat stress 
alone, more so in heat-sensitive (ICC4567, ICC5912) and 
drought-sensitive (ICC3776) genotypes than heat-tolerant 
(ICC1356, ICC15614) and drought-tolerant (ICC8950) 
genotypes (Awasthi et al. 2017). Similarly, chlorophyll 
concentrations declined more in plants exposed to com-
bined drought/heat stress than individual stresses in wheat 
(Prasad et  al. 2011; Farooq et  al. 2017; Qaseem et  al. 
2019a), lentil (Sehgal et al. 2017), and tomato (Duan et al. 
2017; Raja et  al. 2020). Combined drought/heat stress 
(25–45 °C; 20% field capacity) reduced chlorophyll content 
less in a tolerant tomato genotype (Hybrid 61) than mod-
erately sensitive (Nagcarlang) and sensitive (Moskvich) 
genotypes (Nankishore and Farrell 2016) (Table 1). Plants 
with the stay-green character filled grains better under 
stress conditions than those without stay-green (Hörten-
steiner 2009; Farooq et al. 2009, Farooq et al. 2011). Being 
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an easy trait to measure, stay-green can be used to evaluate 
stress tolerance among large populations of crop plants 
under combined drought/heat stress.

Reduced chlorophyll inhibits chlorophyll fluorescence 
(Fv/Fm ratio), reflecting photosynthetic efficiency in terms 
of photosystem II (PSII) function and other downstream 
electron acceptors. PSII is the most labile portion of the 
photosynthetic apparatus and easily undergoes light-induced 
damage in heat and drought-stressed plants (Maxwell and 
Johnson 2000; Killi et al. 2020). The D1 protein in the 
PSII reaction center is more sensitive to heat and drought 
stress than other core proteins. PSII is a reaction center 
for harvesting light energy to yield energy currency (ATP) 
and reducing power (NADPH) through non-cyclic photo-
phosphorylation in the thylakoids and is associated with the 
oxygen-evolving complex to release  O2 and protons  (H+) 
(Taiz and Zeiger 1991). Therefore, a plant’s photosynthetic 
efficiency can be accurately measured using the Fv/Fm 
ratio, with a decreasing value indicating a non-functional 
PSII system and photoinhibition. Chlorophyll fluorescence 
(Fv/Fm) values typically range from 0.75–0.80 and are lin-
early related to quantum yield (Kitajima and Butler 1975). 
Besides light-induced damage, ROS generation can dam-
age the PSII reaction center (Guidi et al. 2019). Combined 
drought/heat stress affect chlorophyll fluorescence in vari-
ous crops, reducing or even stopping PSII activity due to 
the reduced concentration of photosynthetic pigments. For 
example, combined drought/heat stress (35/20 °C; 40–45% 
field capacity) applied 12 days after heading for 15 days 
significantly reduced chlorophyll fluorescence values in 12 
wheat varieties raised in the phytotron; GK-Othalom, Frank-
enkorn, and MV-Makaroni had higher chlorophyll fluores-
cence values and thus higher grain yields than the other vari-
eties (Balla et al. 2006), suggesting a positive association 
between the two traits. Similarly, combined drought/heat 
stress significantly reduced chlorophyll fluorescence values 
in tomato (Nankishore and Farrell 2016), chickpea (Awasthi 
et al. 2017), wild barley (Hordeum spontaneum; Jedmowski 
et al. 2015), lentil (Sehgal et al. 2019), and rice (Kumar 
et al. 2014), and thus yields. Chlorophyll fluorescence has 
been used to distinguish genotypes resilient to combined 
drought/heat stress in crops, including wheat (Balla et al. 
2006), chickpea (Awasthi et al. 2017), and rice (Kumar 
et al. 2014), demonstrating that chlorophyll fluorescence 
is a reliable method for assessing the pattern of inhibition 
of photosynthetic electron transport. Photosynthetic traits, 
such as chlorophyll content and chlorophyll fluorescence, 
can be measured to estimate the effect of stresses on growth 
and yield and positively correlate with the carbon exchange 
rate. The studies mentioned above showed that chlorophyll 
content and chlorophyll fluorescence values vary signifi-
cantly between tolerant and sensitive genotypes, indicat-
ing their importance as selection traits during early plant 

growth (Jedmowski et al. 2015). Therefore, these traits offer 
valuable insight into the physiological responses of different 
genotypes under combined stress.

Photosynthesis

Abiotic stresses profoundly affect photosynthesis, one of the 
primary processes determining crop yield (Liu and Huang 
2008). Photosynthesis is inhibited by impaired electron 
transport and reduced PSII and RuBisCo activity (Lawlor 
and Cornic 2002). Drought stress reduces photosynthesis 
by decreasing  CO2 availability due to increased resistance 
to  CO2 diffusion from the atmosphere to leaves or sub-sto-
matal cavity to carboxylation sites (Flexas et al. 2007). Heat 
stress decreases photosynthesis by altering electron transport 
capacity (Zafar et al. 2018). Combined drought/heat stress 
limits  CO2 availability by closing stomata and decreasing the 
 CO2/O2 ratio in chloroplasts (Foyer and Noctor 2000). The 
reduction in  CO2 solubility and reduced RuBisCo affinity 
increases photorespiration, relative to photosynthesis, as the 
temperature increases (Jordan and Ogren 1984). Drought 
and heat stress can also damage photosynthetic components 
in plants by overproducing ROS (Hussain et al. 2019a, b). 
The effects of combined drought/heat stress on photosyn-
thesis vary depending on plant species—C4 plants maintain 
a higher photosynthetic rate at high temperature than  C3 
plants due to effective  CO2 concentrations within bundle 
sheath cells and suppressed photorespiration. Photosynthesis 
and growth in  C3 crops are directly affected more by water 
deficit and temperature than  C4 crops (Crafts-Brander and 
Salvucci, 2002).

Combined drought/heat stress inhibited photosyn-
thetic activity by destabilizing RuBisCo and damaging 
PSII (Nishiyama and Murata 2014) in chickpea (Awasthi 
et al. 2017). In Arabidopsis, combined drought/heat stress 
(38/30 °C; soil RWC 45%) at 32 days after sowing reduced 
photosynthesis by 54% and 62% after 4 and 8 days of stress 
exposure, respectively (Zinta et al. 2014). Similarly, this 
stress combination suppressed photosynthesis, enhanced res-
piration, closed stomata, and increased leaf temperature in 
tobacco (Rizhsky et al. 2002). Combined drought/heat stress 
decreased photosynthetic activity and enhanced ROS pro-
duction in Populus yunnanensis (Li et al. 2014) and severely 
reduced PSII efficiency in Festuca arundinacea and Lolium 
perenne (Jiang and Huang 2001a, b). The stresses, when 
imposed together, can reduce photosynthesis; the subsequent 
dilution of sucrose in wheat spikelets was associated with 
floret abortion (Barnabás et al. 2008). Combined drought/
heat stress in rice suppressed photosynthetic gene expression 
and increased the demand for sugars by inducing transcripts 
encoding enzymes that catalyze reactions in glycolysis and 
the pentose phosphate pathway (Lawas et al. 2018a, b). 
Other studies have shown the adverse effects of combined 
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drought/heat stress on various photosynthetic traits in vari-
ous crops, including wheat (Balla et al. 2006; Wang et al. 
2010; Qaseem et al. 2019a, b), tomato (Zhou et al. 2017), 
Medicago (An et al. 2014), tobacco (Rizhsky et al. 2002), 
chickpea (Awasthi et al. 2017), barley (Mahalingam and Bre-
gitzer 2019), lentil (Sehgal et al. 2017), Brassica (Diksaityt 
et al. 2019) maize (Hussain et al. 2019a, b), and cotton (Loka 
et al. 2020). Stress-induced stomatal or non-stomatal limita-
tions reduce photosynthetic performance (Athar and Ashraf 
2005; Rahnama et al. 2010; Taiz and Zeiger 2010). Using 
photosynthetic capacity as a selection criterion is possible 
because it positively affects plant growth under stress condi-
tions. Understanding photosynthetic responses to fluctuating 
environments could improve model predictions of dynamic 
photosynthesis.

Carbohydrate metabolism

Drought and heat stress can reduce photosynthesis, curb-
ing sucrose production in leaves and subsequent transport to 
flowers and grains (Awasthi et al. 2014). Disruption in sugar 
metabolism was attributed to floral abortion in wheat spike-
lets (Barnabás et al. 2008) (Table 1). Combined drought/
heat stress adversely affects metabolic and assimilate trans-
fer processes necessary for seed filling in chickpea (Awasthi 
et al. 2014), such as the accumulation of seed reserves due to 
the impact on enzyme activity. Combined drought/heat stress 
in chickpea during seed filling reduced starch concentra-
tions in leaves by 44% due to decreased starch phosphory-
lase activity, and inhibited the activities of starch hydrolyz-
ing (β-amylase), sucrose-synthesizing (sucrose synthase), 
and hydrolyzing (acid invertase) enzymes (Awasthi et al. 
2014). In tomato, combined drought/heat stress decreased 
sucrose content in leaves due to decreases in photosynthetic 
rate and photosynthetic gain (Zhou et al. 2017). Sucrose 
is cleaved by invertases (Sturm and Tang 1999); in maize, 
the activity of vacuolar and cell-wall-bound acid invertases 
predominates during kernel development (Weschke et al. 
2000), which decreases during drought stress (Zinselmeier 
et al. 1999; Andersen et al. 2002), with parallel reductions 
in ovary growth and hexoses. In rice, sugar metabolism is 
a crucial metabolic and transcriptional component differen-
tiating floral organ tolerance or susceptibility to combined 
drought/heat stress. The carbohydrates, trehalose, fructose-
6-P, and galactaric acid, declined markedly in a stress-
tolerant rice cultivar (N22) exposed to combined drought/
heat stress (Li et al. 2015a, b). In lentil, combined drought/
heat stress reduced sucrose and starch concentrations, more 
so in drought-sensitive than drought-tolerant genotypes 
(Sehgal et al. 2017). Similarly, other studies have revealed 
that the enzymes related to sucrose and starch synthesis and 
seed metabolism are sensitive to drought (e.g., sorghum; 
Bing et al. 2014) and heat stress [e.g., maize (Wilhelm 

et al. 1999), wheat (Liu et al. 2011)]. Identifying the target 
enzymes related to carbohydrate accumulation in seeds is 
vital for understanding and improving seed filling in a com-
bined stress environment.

Osmolytes

Plants survive combined drought/heat stress by changing 
their metabolism to favor osmolytes and secondary metabo-
lites synthesis that promotes stress tolerance (Alhaithloul 
et al. 2020) (Table 1). Plants affected by drought and heat 
stress accumulate compatible solutes, such as proline, gly-
cine betaine, and soluble sugars, which play a role in osmotic 
adjustment to maintain water status and protect leaf cells. 
Increased production of these osmoprotectants decreases 
ROS production and reduces leaf senescence (Hanif et al. 
2020). Proline is part of numerous stress signaling path-
ways involved in stress adaptation (Qaseem et al. 2019a). 
Moreover, proline stabilizes membranes, sub-cellular struc-
tures, and cellular redox potential by destroying free radicals 
(Kishor et al. 2005). Proline plays a vital role in combating 
stress by scavenging ROS from cells without interfering 
with normal biological processes (Parvaiz and Satyawati 
2008). Proline accumulation mitigates cytoplasmic acido-
sis and maintains the  NADP+/NAD+ ratio (Alhaithloul et al. 
2020). Increases in glycine betaine and proline can maintain 
RuBisCo activity and prevent photoinhibition (Parry et al. 
2013). In tomato, combined drought/heat stress increased 
osmolyte accumulation (Qaseem et al. 2019b). In Mentha 
piperita and Catharanthus roseus, significant amounts 
of proline, glycine betaine, sugars, inositol, and mannitol 
accumulated in response to combined drought/heat stress 
(Alhaithloul et al. 2020). A connection between foliar pro-
line accumulation and yield stability in heat- and drought-
prone field environments was reported in barley (Singh et al. 
1972) and wheat (Qaseem et al. 2019b; Sattar et al. 2020). 
In contrast, production of total soluble proteins, glycine 
betaine, and leaf proline declined in wheat under combined 
drought/heat stress (Hanif et al. 2020), causing an imbalance 
between antioxidants/osmoprotectants and oxidative stress, 
as reported in another study in wheat (Wang et al. 2014). 
Exogenous proline application to rice plants exposed to com-
bined drought/heat stress upregulated enzymatic antioxidant 
activities [including superoxide dismutase (SOD), peroxi-
dase (POD), and catalase (CAT)] and total soluble proteins, 
leaf proline, and glycine betaine contents, and curtailed lipid 
peroxidation, which increased chlorophyll content and yield 
(Hanif et al. 2020), thus validating proline’s role in confer-
ring stress tolerance.

Glycine betaine plays an important role in enhancing 
plant tolerance to drought and heat stress (Sakamoto and 
Murata 2002; Yang et al. 2007; Khan et al. 2009). Glycine 
betaine can attenuate the effects of heat stress by disrupting 
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and repairing PSII during photoinhibition and protecting it 
from heat-induced injuries (Allakhverdiev and Murata 2004; 
Allakhverdiev et al. 1996; Allakhverdiev et al. 2007). Over-
accumulation of glycine betaine can enhance PSII tolerance 
and ATPase activities under drought and heat stress, alone or 
in combination, and protect chloroplast and thylakoid struc-
tures from damage, increasing photosynthesis; the underly-
ing mechanisms could be enhanced antioxidant activity and 
water status (Wang et al. 2010).

Sugars are osmolytes that display hormone-like activities 
and function as primary messengers in signaling (Alhaith-
loul et al. 2020). Accumulated sugars in stressed plants 
serve as an energy source for stress recovery, signal trans-
duction, and osmoprotection (Rosa et al. 2009). Drought or 
heat stress enhanced the accumulation of sugars in chickpea, 
more so in drought- or heat-tolerant genotypes, respectively 
(Awasthi et al. 2014). In contrast, combined drought/heat 
stress decreased sugar concentrations, more so in heat-sen-
sitive genotypes (Awasthi et al. 2014), which was associated 
with more stress damage.

There is little information on osmolytes turnover in 
plants facing combined drought/heat stress; further studies 
are needed to correlate their accumulation with combined 
stress tolerance.

Oxidative damage and antioxidants

Drought and heat stress increase ROS concentrations mani-
fold (Sehgal et al. 2017), causing membrane lipid peroxida-
tion and damaging proteins and RNA and DNA molecules 
(Mittler 2002). ROS are mainly produced by NADPH oxi-
dases (termed respiratory burst oxidase homologs; RBOHs) 
in apoplasts and some oxidases and peroxidases in chlo-
roplasts, mitochondria, peroxisomes, and possibly other 
cellular compartments via different pathways (Suzuki et al. 
2011; Vaahtera et al. 2014; Gilroy et al. 2016; Mignolet-
Spruyt et al. 2016). Continual ROS production (metaboli-
cally or for signaling purposes) and detoxification involv-
ing diverse antioxidants occurs in all cellular compartments 
and is controlled by ROS gene expression (Mittler et al. 
2004). Tomato plants exposed to combined drought/heat 
stress accumulated more malondialdehyde (an indicator of 
lipid peroxidation in membranes) and hydrogen peroxide 
than the controls (Raja et al. 2020). Antioxidant enzymes—
SOD, ascorbate peroxidase (APX), catalase (CAT), and 
glutathione reductase (GR)—increased two- to three-fold 
in tomato under combined drought/heat stress, while non-
enzymatic antioxidants—ascorbic acid (AsA) and reduced 
glutathione (GSH)—only increased one- to two-fold (Bax-
ter et al. 2014; Raja et al. 2020) (Table 1). Some distinct 
variations have been reported in response to individual and 
combined stresses. For instance, in Populus yunnanensis, 
combined drought/heat stress decreased photosynthetic 

activity and enhanced ROS production more than individual 
stresses (Li et al. 2014). Drought stress-induced detoxifi-
cation enzymes, such as CAT and glutathione peroxidase 
(GPX), heat stress-induced cytosolic (APX), and thioredoxin 
peroxidase (TPX), and combined stress induced the expres-
sion of transcripts encoding alternative oxidase (AOX), 
GPX, GR, copper/zinc SOD (Cu/Zn-SOD), and glutathione 
S-transferase (GST) (Raja et al. 2020). Combined drought/
heat stress caused more oxidative damage than individual 
stresses, as observed in birdsfoot trefoil (Lotus corniculatus) 
(Sainz et al. 2010), cotton (Sekmen et al. 2014), and purslane 
(Portulaca oleracea L.) (Jin et al. 2015). Drought and heat 
stress, alone or combined, significantly increased oxidative 
stress in chickpea, measured as the increase in malondialde-
hyde (MDA) and  H2O2 contents in leaves and seeds, more 
so under combined stress, suggesting an intensification of 
damage; at the same time, antioxidant expression declined 
(Awasthi et al. 2017). In bread wheat, combined drought/
heat stress increased SOD and ascorbate peroxidase (APX) 
activity by 54% and 55%, respectively, relative to the con-
trol (Sattar et al. 2020). Removal of  H2O2 by APX, SOD, 
and CAT is vital for plants to tolerate combined drought/
heat stress (Koussevitzky et al. 2008). Tolerance to com-
bined drought/heat stress was associated with increased CAT 
activities in chickpea (Awasthi et al. 2017) and APX and 
GR in cotton (Sekmen et al. 2014). The induction of ROS 
detoxification enzymes is a common response among plant 
species to combined drought/heat stress, indicating that a 
higher antioxidant capacity is associated with stress toler-
ance (Zandalinas et al. 2018). There are large differences in 
the pattern of expression of various antioxidants in response 
to combined drought/heat stress, suggesting variations in the 
antioxidative adaptive mechanisms in diverse crop plants, 
which can be used as reliable markers of stress tolerance.

Strategies for improving combined drought 
heat stress tolerance in crops

Various strategies are available for improving crop tolerance 
to combined drought/heat stress, including agronomic, plant 
breeding, and ‘omics’ approaches. The following sections 
discuss these strategies and incorporate examples from vari-
ous crops that could serve as a benchmark for developing 
crops that tolerate combined drought/heat stress.

Crop genetic resources act as reservoirs 
for combined drought/heat stress tolerance

Improving crop performance under combined drought/heat 
stress is an important research area for stabilizing yields and 
ensuring food security under increasing global drought and 
heat stress. Identifying crop germplasm with superior yield 
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and combined drought/heat tolerance is urgently needed 
to ensure global food security. Continuing efforts by plant 
breeders that explore, evaluate, and identify potential geno-
types with combined drought/heat stress tolerance in test 
environments is the cornerstone for crop improvement (Chen 
et al. 2012; Cairns et al. 2013; Hamidou et al. 2013; Awasthi 
et al. 2014). Thus, the germplasm of various crop species 
has been screened for resilience to combined drought/heat 
stress, and promising genetic sources of tolerance have been 
identified.

Evaluation of selected maize varieties and inbred lines 
in hot, dry environments identified B76 as the most tolerant 
genotype of combined drought/heat stress due to its inher-
ent ability to maintain higher relative water content, lower 
membrane injury, and superior yield than the other geno-
types (Chen et al. 2012). An evaluation of 300 inbred maize 
lines in eastern and southern Africa—important maize-
growing areas where drought and heat stress co-occur—
revealed significant genetic variability for yield and yield-
related traits for combined drought/heat tolerance (Cairns 
et al. 2013). Subsequent rigorous screening identified Posta 
Sequia C7-F6-42-6-2-2 and DTPYC9-F46-1-2-1-2 as the 
best genotypes for increasing genetic gain in maize breed-
ing programs in combined drought- and heat-prone regions 
in Africa (Cairns et al. 2013). A three-year study assessed 
drought-tolerant hybrid maize genotypes to identify com-
bined drought/heat tolerance in Kano State, Nigeria; M1227-
17, M0826-3, and M1124-18 had promising results under 
combined stress (Meseka et al. 2018) and could be used as 
the base material for transferring combined tolerance into 
other elite breeding lines to sustain maize yields in regions 
that frequently experience combined drought/heat stress. 
Hossain et al. (2012) reported two barley genotypes (Zer-
nograd.770 and Nutans) and one wheat genotype (Line4) as 
potential sources of combined drought/heat tolerance. An 
assessment of various phenological traits and yield attributes 
in 180 diverse elite wheat genotypes under drought and heat 
stress, alone and combined, revealed several promising lines 
for drought or heat tolerance; however, only two genotypes 
(ESWYT_116 and EBWYT_529) had superior yield per-
formance under combined stress (Qaseem et al. 2019b). In 
groundnut, significant genetic variability for pod and hulm 
yields and harvest index traits was captured in 268 genotypes 
tested under combined water stress and high-temperature 
stress, with the best performers being ICG10053, ICG862, 
ICG 6646 (Table 2; Hamidou et al. 2013). Similarly, lentil 
genotypes ILL 7835, ILL 6075, ILL 6362, ILL 7814 had 
superior performance based on stress tolerance indices asso-
ciated with yield traits under combined drought/heat stress 
(El-haddad et al. 2020).

As landraces and crop wild relatives act as natural reser-
voirs for abiotic stress tolerance, Jumrani and Bhatia (2018) 
revealed that soybean accession EC 538828 retained more 

pods/plant and yield than accession JS-97-52 under com-
bined drought/heat stress. In an earlier study, Sapra and 
Anaele (1991) identified soybean genotypes, PI 408.155, PI 
423.827B, PI 423.759, and Pershing, as promising sources 
of drought and heat stress tolerance. In wheat, synthetic 
hexaploid wheat, ALTAR 84/AO’S’, could be incorporated 
in wheat breeding to develop combined drought/heat toler-
ance as it retained more chlorophyll and better grain yields 
in the field than other genotypes (Pradhan et al. 2012). In 
addition to directly selecting genotypes with superior yield 
performance, other physiological, biochemical, and repro-
ductive parameters could be important for selecting geno-
types as donor parents to transfer these traits to improve 
genetic gain and adaptation under combined drought/heat 
stress. Among five tested maize genotypes under drought 
and heat stress, Pioneer 31G70 could be a potential donor 
for combined drought/heat tolerance because it performed 
better in terms of photosynthesis, leaf water potential, and 
cell membrane injury (Kebede et al. 2012). Likewise, two 
N22 rice accessions showed combined drought/heat toler-
ance with improved anther dehiscence, pollen germina-
tion, and spikelet fertility in the field, relative to IR64 and 
Apo Moroberekan (Rang et al. 2011). The M-503 cotton 
cultivar expressed higher combined drought/heat tolerance 
than other cultivars due to its enhanced antioxidant defense 
mechanisms that induced higher CAT and POX activity and 
osmolyte (i.e., proline) accumulation (Sekmen et al. 2014). 
Maize genotype Xida 899 alleviated oxidative stress-medi-
ated damage and induced antioxidant mechanisms to main-
tain proper photosynthesis and other essential physiological 
activities under combined drought/heat stress (Hussain et al. 
2019a, b). Likewise, chickpea genotype ICC8950 increased 
the activity of RuBisCo and starch- and sucrose-synthesizing 
enzymes and improved other physiological and yield param-
eters (relative water content, membrane injury, and grain 
filling) under combined drought/heat stress (Awasthi et al. 
2014).

Thus, a systematic screening of wild relatives, landraces, 
pre-bred lines, and unutilized germplasm reserved in global 
gene banks needs immediate attention to identify and trans-
fer stress ‘adaptive alleles’ into elite crop cultivars for sus-
taining yield under combined drought/heat stress.

Genomics approaches involving bi‑parental 
QTL mapping and genome‑wide association 
for delineating underlying QTL/genomic regions 
controlling combined drought/heat tolerance

Combined drought/heat tolerance is a complex trait, which 
is inherited quantitatively and greatly influenced by the 
G × E effect. Clarifying its genetic basis may shed light on 
the common genetic determinants controlling combined 
drought/heat stress tolerance in crop plants. Given the 
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Table 2  List of crop genotypes exhibiting combined drought and heat stress tolerance

Crop Name of genotype Traits contributing combined 
tolerance

Country/place reported from References

Rice N22 Spikelet fertility, anther dehis-
cence, higher in vivo pollen 
germination

IRRI, Philippines Rang et al. (2011), Jagadish 
et al. (2011), Li et al. 
(2015a, b)

Wheat Aegilops geniculata Physiological and yield and 
yield-related traits

Zaharieva et al. (2001)

TAM107 Yield and yield-related traits Wheat Genetics Resource 
Center, Kansas

Qin et al. (2008)

Katya High heat shock protein expres-
sion

Grigorova et al. (2011a, b)

ALTAR 84/AO’S’, ALTAR 84/
Aegilops tauschii Coss. (WX 
193)

Physiological and yield and 
yield-related traits

Department of Agronomy, 
Kansas State University, 
Manhattan, Kansas, USA

Pradhan et al. (2012)

ESWYT_116, EBWYT_529 Yield and yield-related traits National Agriculture Research 
Center (NARC) Islamabad, 
Pakistan

Qaseem et al. (2019a)

Line4’ Yield and yield-related traits South-eastern Russia Hossain et al. (2012)
Haurani*2/T. urartu derivatives Phenological traits and yield-

related traits
Tessaout, Morocco, Wed 

Medani, Sudan
Aberkane et al. (2020)

Maize B76 Yield and yield-related traits USDA, Lubbock,Texas Chen et al. (2012)
Pioneer 31G70 Physiological and yield and 

yield-related traits
Jamie Whitten Delta States 

Research Center, Stoneville, 
MS, UDSA-ARS

Kebede et al. (2012)

La Posta Sequia C7-F64-2-6-2-
2, DTPYC9-F46‐1‐2‐1‐2

Yield traits Cairns et al. (2013)

M1227-17, M0826-3, M1124-
18

Yield Kadawa, Kano State in Nigeria Meseka et al. (2018)

Xida 889 High ant-oxidant defense 
system and higher photosyn-
thetic capacity

Southwest University, Chong-
qing, China

Hussain et al. (2019a, b)

GH-4859, TZm-1353 Yield traits Ikenne, Nigeria Nelimor et al. (2019)
Barley SBCC073 High yield Spain Cantalapiedra et al. (2017)

Arta Morphological adaptation and 
maintenance of photosyn-
thesis

Syrian Rollins et al. (2013)

Zernograd.770, Nutans Yield and yield-related traits South-eastern Russia Hossain et al. (2012)
Chickpea ICC8950 Physiological, biochemical and 

yield-related traits
Panjab University, Chandigarh, 

India
Awasthi et al. (2014)

ICC8950 High antioxidant defense 
capacity and high seed yield

Panjab University, Chandigarh, 
India

Awasthi et al. (2017)

Lentil ILL 7835 Heat tolerance index El-haddad et al. (2020)
Ground nut ICG10053, ICG862, ICG 6646, 

ICG10950, 55-437, ICG6022, 
ICG6813, ICG8285, 
ICG12509, ICG12921

Yield and yield-related traits ICRISAT Sahelian Centre 
(ISC) in Sadore, Niger

Hamidou et al. (2013)

Soybean PI 408.155, PI 423.827B, PI 
423.759, Pershing

Germination Alabama A&M University 
Research Station

Sapra and Anaele (1991)

EC 538828 Yield and yield-related traits ICAR-Indian Institute of Soy-
bean Research, Indore

Jumrani and Bhatia (2018)

Potato L1 (84.194.30) Various physiological traits University of Tsukuba, Japan Handayani and Watanabe 
(2020)

Tomato Hybrid 61 Physiological traits Nankishore and Farrell (2016)
Cotton M-503 High antioxidant capacity Nazilli Cotton Research Insti-

tute (NCRI) (Nazilli, Aydın, 
Turkey

Sekmen et al. (2014)
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unprecedented technical advancements, copious genomic 
resources are available to dissect traits of agricultural 
importance and abiotic stresses in various crop plants. Bi-
parental QTL mapping and genome-wide association studies 
(GWAS) have been used to elucidate QTL/genomic regions/
haplotypes related to combined drought/heat tolerance in 
various crops (Pinto et al. 2010; Templer et al. 2017; Suku-
maran et al. 2018; Li et al. 2019). However, identified QTLs 
attributing combined drought/heat tolerance are limited. Bi-
parental QTL mapping in wheat using the Seri × Babax cross 
identified several QTL on the 1B-a, 2B-a, 3B-b, 4A-a, 4B-b, 
and 7A-a linkage groups that contribute to yield, yield-
related, and other important physiological traits (canopy 
temperature, chlorophyll content, and NDVI) under water 
and heat stress (Pinto et al. 2010). Another study in wheat, 
using a RAC875 × Kukri doubled haploid population, iden-
tified QTL on the 2B, 3B-2, and 7A-2 linkage groups that 
control canopy temperature, NDVI, and yield traits under 
drought or heat stress alone (Bennett et al. 2012). Subse-
quent advancements in array-based genotyping platforms 
in various crop plants have enabled the precise mapping 
of complex traits. In this context, DArTseq and Illumina 
bead chip 90K array-based SNP genotyping of RILs devel-
oped from a SYN-D × Weebill1 wheat cross pinpointed five 
QTL hotspots related to yield and yield-related traits under 
drought, heat, and combined stresses (Liu et al. 2019). The 
authors also underpinned two important NST1-like pro-
tein genes and the TPR15 stress-responsive candidate gene 
underlying the QYLD-6D.1 QTL on 6D attributing to yield 
under combined drought/heat stress. However, the number 
and resolution of combined drought/heat-tolerant QTL iden-
tified through bi-parental QTL mapping remains low.

Further, the availability of high-throughput SNP mark-
ers has enabled GWAS to decipher a plethora of significant 
marker-trait associations (MTAs) controlling combined 
drought/heat tolerance across the whole genome in a large 
set of diverse plant accessions (Sukumaran et al. 2018; 
Yuan et al. 2019). Relying on this approach, genome-wide 
scanning of a large panel of 208 durum wheat identified 
93 MTAs on chromosomes 2A, 4A, 4B, 5B, 7A, and 7B 
contributing to various phenological, physiological, and 
yield and yield-related traits under combined drought/heat 
stress (Sukumaran et al. 2018). Qaseem et al. (2019a) iden-
tified 60 MTAs for various phenological and yield-related 
traits and 29 MTAs for stress tolerance indices, such as the 
tolerance index (TOL) and stress tolerance index (STI), 
by performing GWAS on 192 diverse sets of wheat germ-
plasm (see Table 3). IACX203 (67.24 cM) and wsnp_Ex_
c18372_27196625 were two important markers attributed 
to STI, demonstrating 21.2% of the phenotypic variance 
explained (PVE). Likewise, RFL_Contig854_2253 on 3A 
was significantly attributed to TOL, clarifying 23.7% of the 
PVE (Qaseem et al. 2019a). In an earlier study, the same 

research group obtained two IAAV8258 and wsnp_Ex_
c7168_12311649, two markers residing on chromosome 
5A exhibiting significant associations with traits under 
heat, drought, and combined stresses (Qaseem et al. 2018). 
Similarly, Schmidt et al. (2020) obtained QTL on chromo-
some 3B under combined drought/heat stress using GWAS 
on a panel of 315 spring wheat accessions overlapped with 
QTL related to tiller number, as reported by Qaseem et al. 
(2018). The QTL controlling grain weight under combined 
drought/heat stress found on chromosome 3B, 5B, and the 
long arm of chromosome (Schmidt et al. 2020) coincided 
with the QTL contributing to harvest index (Garcia et al. 
2019) under combined stress. Emphasizing grain yield and 
yield-related traits, Li et al. (2019) identified 295 signifi-
cant MTAs using GWAS on a set of 277 wheat accessions 
evaluated across 30 locations with a 660K SNP array under 
normal, drought, heat, and combined stresses. Two impor-
tant candidate genes, TraesCS6A02G124100 and TraesC-
S6D02G114400, contributing to grain yield under multiple 
stress were identified, which can be used to improve grain 
yield under combined drought/heat stress in wheat (Li et al. 
2019). Considering maize, a single SNP and haplotype-
based GWAS analysis on a panel of 300 maize genotypes 
revealed several MTAs related to phenological and yield-
related traits under combined drought/heat stress (Yuan 
et al. 2019). Among the various candidate genes identified, 
GRMZM2G151863 ‘encoding GDT1-like protein’ had a 
significant association with grain yield, and ‘WRKY DNA-
binding protein’ gene GRMZM2G076657 had a significant 
association with the anther–silking interval under combined 
drought/heat stress (Yuan et al. 2019). Recent advances in 
metabolomic platforms have provided insight into meta-
bolic QTL (mQTL) that attenuate plant adaptation under 
abiotic stresses, including combined drought/heat stress, at 
the metabolic level (Riedelsheimer et al. 2012; Wen et al. 
2015; Templer et al. 2017). Thus, to explore mQTL attribut-
ing to plant adaptation in barley under combined drought/
heat stress, Illumina iSelect 9K array-based genotyping and 
comprehensive metabolite-based phenotyping data from 
81 barley genotypes under control, drought, and combined 
drought/heat stress was investigated, uncovering 13 mQTL 
related to glutathione, succinate, and γ-tocopherol content 
contributing to antioxidant and ROS scavenging activity on 
chromosomes 3H, 5H, and 7H (Templer et al. 2017).

Hence, ‘metabolomics-assisted QTL’ breeding encom-
passing mQTL and metabolomics—GWAS will shed new 
light on improving traits under combined drought/heat 
stress (Raza 2020). Furthermore, GWAS based on SNP/
structural variations derived from whole-genome resequenc-
ing (WGRS) of global crop germplasm delineated several 
genomic regions/haplotypes controlling various complex 
traits, including adaptive loci contributing to combined 
drought/heat tolerance (Bohra et al. 2020). Based on this 
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WGRS-based GWAS analysis, Varshney et al. (2019) identi-
fied 262 MTAs and some important candidate genes (TIC, 
REF6, aspartic protease, cc-NBS-LRR, RGA3) contributing 
to drought and heat stress in a set of 429 chickpea acces-
sions. Thus, underpinning candidate gene(s) controlling 
combined drought/heat tolerance could provide the impetus 
for developing stress tolerant genotypes. In parallel, these 
QTL/haplotypes carrying various physiological traits and 
grain yield traits contributing to plant adaptation under com-
bined drought/heat tolerance could be targeted for transfer 
into high yielding yet combined drought/heat-sensitive crop 
genotypes.

Transcriptomics for discovering novel/common 
regulatory candidate gene(s) controlling combined 
drought/heat tolerance

Understanding the molecular response of plants exposed to 
frequently occurring combined drought/heat stress is criti-
cal for improving plant yields (Barnabás et al. 2008). Plants 
respond by rapidly reprogramming transcription networks 
and alternative splicing upon receiving external stimuli 
of combined drought/heat stress (Liu et al. 2018). Several 
transcription factors and co-regulators involved in estab-
lishing transcription networks for plant adaptation to vari-
ous abiotic stresses have been reported. Some studies have 
suggested that plant responses to combined water and heat 
stress at the molecular level differ from those of individual 
stresses (Suzuki et al. 2014; Zandalinas et al. 2018), but 
there is limited information available to confirm this sug-
gestion (Tricker et al. 2018). Transcriptomics—an important 
functional genomics approach—could involve the dynamic 
expression of various gene(s) to decipher underlying can-
didate gene(s) controlling various abiotic stresses (Sakuma 
et al. 2006) and offer insight into novel/common candidate 
gene(s), gene networks, and signaling molecules associ-
ated with various pathways governing heat, drought, and 
combined stresses in plants. This approach could also offer 
insight into the expression of unique gene combinations or 
common genes and gene networks expressed under com-
bined drought/heat stress or individual stresses that allow 
plants to acclimate under stress conditions (Shaar-Moshe 
et al. 2017; Cantalapiedra et al. 2017; Liu et al. 2018). Thus, 
transcriptomics could be used to inquire about the gene(s)/
regulatory gene networks involved in various cellular meta-
bolic pathways controlling osmoregulation, detoxification or 
minimizing ROS activity, expression of phytohormones, to 
mediate combined drought/heat tolerance in plants (Aprile 
et al. 2013; Liu et al. 2015; Kumazaki and Suzuki 2019; Sun 
et al. 2020).

Before the advent of RNA sequencing (RNA-seq) tech-
nology, microarray-based transcriptomic analysis was instru-
mental in unraveling candidate gene(s) and deciphering their 

plausible function of various abiotic stresses, including 
drought and heat stress. This technique offered preliminary 
insight into several differentially expressed genes (DEGs) 
in two durum wheat cultivars, Cappelli and Ofanto, exposed 
to combined drought/heat stress (Aprile et al. 2013) (see 
Table 4). A plethora of genes involved in the fatty acid 
β-oxidation pathway, valine catabolism, heat shock factors, 
glyoxylate cycle, and senescence were upregulated under 
heat stress, and genes involved in proline synthesis, HSPs, 
dehydrins, stomata closure, chromatin condensation, and 
signal transduction were upregulated under drought stress 
in wheat (Aprile et al. 2013). Microarray analysis revealed 
896 upregulatory (e.g., OST1, TCH2, CPK16, and CIPK9, 
spermidine synthase (SPDS1), and S-adenosylmethionine 
decarboxylase (SAMDC)) and 1147 downregulatory genes 
(e.g., transcription factors MYB61 and BZIP6) in sorghum 
under combined drought/heat stress (Johnson et al. 2014).

The subsequent arrival of high-throughput RNA-seq tech-
nology deepened our understanding of various candidate 
genes involved in combined drought/heat tolerance in bread 
wheat. Deep transcriptome analysis of genotype TAM107 
exposed to heat, drought, and combined stresses resulted in 
a myriad of DEGs, including upregulated and downregu-
lated genes (Liu et al. 2015). However, the gene expression 
pattern under combined drought/heat stress differed from 
those under individual drought or heat stress. The regu-
lated genes belonged to various transcription factors (NAC, 
AP2/ERF, DREB, MYB, WRKY, and HSF) controlling the 
downstream target genes/gene networks involved in various 
stress-responsive hormone signaling pathways (Liu et al. 
2015). Likewise, transcriptome analysis of Agrotis stolonif-
era revealed a set of 670 and 812 common upregulated and 
downregulated genes under drought and heat stress, respec-
tively (Xu and Huang 2018). The commonly upregulated 
genes under drought and heat stress were associated with 
oxylipin and proline synthesis, while the commonly down-
regulated genes were associated with thiamine biosynthesis 
and calcium-sensing receptors, providing insight into the 
combined drought/heat tolerance mechanism in Agrotis 
stolonifera. Several common upregulated genes related to 
the antioxidant mechanism and encoding HSPs were identi-
fied through transcriptome profiling of Phoenix dactylifera, 
exposed to heat, drought, and combined stresses, revealing 
that increased activation of antioxidants and HSPs is com-
mon in plants adapting to drought and heat stress (Safronov 
et al. 2017). The protection of photosynthetic reaction cent-
ers under combined drought/heat stress by increasing the 
accumulation of transcripts encoding reaction center pro-
teins (D1 and D2) in PSII of sid2-1 mutant plants deficient in 
ICS1 encoding salicylic acid and phylloquinone in Arabidop-
sis is noteworthy (Kumazaki and Suzuki 2019). Likewise, 
Pacbio transcriptome sequencing of pearl millet exposed to 
drought and heat stress, alone or combined, revealed the 
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differential expression of a myriad of transcription factors 
and transcription regulators, including 6920 DEGs under 
heat stress, 6484 DEGs under drought stress, and 1881 com-
mon DEGs under combined drought/heat stress (Sun et al. 
2020). The authors suggested that the identified DEGs were 
related to photosynthetic proteins involved in conferring 
heat tolerance, the glycerophospholipid metabolic pathway 
involved in water stress tolerance, amino acid metabolism, 
encoding ROS-scavenging enzymes, and HSPs and ABA 
signaling. This study also established the differential regula-
tion of various genes under drought and heat stress, suggest-
ing that plants select different genes in response to different 
stresses (Sun et al. 2020).

Furthermore, NGS-based deep RNA-seq technol-
ogy can unearth underlying novel regulatory non-coding 
RNAs, including miRNAs and long non-coding RNAs, 
across the genome that control tolerance to various abi-
otic stresses in plants. Deep transcriptome sequencing 
of tomato leaf exposed to combined drought/heat stress 
identified 11 conserved and 26 novel miRNAs. At the 
same time, the upregulation and downregulation of sev-
eral candidate gene(s) targeted by various miRNAs (ARF8 
targeted by sly-miR167h_mdm and sly-miR167a-5p_ath; 
Solyc02g086820.3.1 targeted by PC-326-3p; GRF3 and 
GRF4 targeted by miR396) (Zhou et al. 2020) was also 
revealed. Further advancements, particularly in bioinfor-
matic analysis, could identify underlying novel candidate 
gene(s) and non-coding regulatory RNAs with their precise 
function in response to combined drought/heat stress.

Proteome dynamics offer insight into proteins 
that enable plants to adapt under combined 
drought/heat stress

Proteome analysis increases our understanding of various 
proteins produced in response to abiotic stress, includ-
ing drought, heat, and their combination, allowing plants 
to adjust. However, our understanding of various proteins 
contributing to combined drought/heat stress is limited. 
Various proteins obtained in response to combined drought/
heat stress enable plant acclimation by protecting cellular 
proteins from misfolding, contributing to cellular detoxifi-
cation, improving photosynthesis, lipid metabolism, amino 
acid synthesis (Grigorova et al. 2011a, b; Rollins et al. 2013; 
Ashoub et al. 2015). Among the various stress-responsive 
proteins, HSPs have a critical role in mediating plant abi-
otic stress tolerance (Wang et al. 2004; Kotak et al. 2007). 
Higher expression of HSPs and defense-related proteins 
under combined drought/heat stress than individual stresses 
has been reported in wheat (Grigorova et al. 2011a, b), rice 
(Jagadish et al. 2011), and tobacco (Rizhsky et al. 2002), 
further supported in a comparative study of wheat under 
drought, heat, and combined stresses (Grigorova et  al. 

2011a). Higher abundance of smHSPs, HSP70, and HSP100 
occurred under combined drought/heat stress (Grigorova 
et al. 2011a), with HSP70, HSP90, HSP100, and smHSP18 
abundant in Arabidopsis and tobacco (Rizhsky et al. 2002, 
2004) and HSPs (16.9 and 17.4 kDa). Comparative proteom-
ics analysis of wild barley exposed to drought, heat, and 
combined stresses revealed the regulation of several pro-
teins providing plant adaptation—proteins contributing to 
detoxification (GST, tocopherol cyclase), amino acid synthe-
sis, lipid metabolism, and HSPs—were upregulated under 
drought stress, HSP70 and HSP90 were upregulated under 
heat stress, and HSPs were upregulated, and photosynthetic 
apparatus proteins (ATP synthase and RuBisCo activase) 
were downregulated under combined stress (Ashoub et al. 
2015). Several unique proteins with unknown functions were 
also noted under combined stress (Ashoub et al. 2015). Rol-
lins et al. (2013) reported no significant change in proteins 
or plant performance in Arta and Keel barley genotypes 
under drought stress; however, the combined drought/heat 
stress significantly altered the expression of proteins and 
inhibited photosynthesis. Under heat stress and combined 
drought/heat stress, upregulation of proteins contributing 
to detoxification (Lhcb3, PsbO, PsbP, RuBisCo activase B, 
glycolytic proteins, chaperones) ultimately mediated plant 
adaptation to the stress in barley (Rollins et al. 2013). In 
soybean, some proteins (stromal 70 kDa heat shock-related 
protein, ribulose bisphosphate carboxylase small chain, and 
carbonic anhydrase 1) were downregulated in genotype 
Surge but upregulated in genotype Davison under combined 
drought/heat stress (Das et al. 2016). Proteomics analysis 
of maize under heat, drought, and combined stresses using 
multiplex iTRAQ-based quantitative proteomics and the 
LC–MS/MS method revealed several differentially expressed 
proteins (Zhao et al. 2016). Of these, chaperone proteins, 
proteases, ethylene-responsive proteins, and ripening-related 
proteins provided the basis for adaptation plasticity to com-
bined drought/heat stress in maize (Zhao et al. 2016). Thus, 
proteomics analysis reveals differentially expressed pro-
teins, including known and novel proteins, in response to 
combined drought/heat stress. Increasing our understand-
ing of these proteins and their accurate functions mediating 
combined drought/heat tolerance could assist in developing 
stress tolerance in crop plants.

Metabolomics for linking phenotypic responses 
under combined drought/heat stress

Metabolomics is an emerging robust approach for offering 
mechanistic insight into how metabolic reprogramming 
assists plants to acclimate in response to various abiotic 
stresses, including combined drought/heat stress (Li et al. 
2015a, b; Alseekh and Fernie 2018). Gaining insight into 
the complexity of various abiotic stress responses cannot 
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be resolved at the proteome and transcriptome levels alone. 
Thus, metabolomics enriches our current understanding of 
plant responses to combined drought/heat stress by disen-
tangling complex gene networks, functional gene pathways, 
and information related to stress-responsive metabolites that 
could serve as metabolic biomarkers for screening abiotic 
stress-tolerant crop plants (Li et al. 2015a, b).

A myriad of metabolites, including various amino acids, 
sugars, organic acids, fatty acids, and other derivative com-
pounds, evoking different responses to drought, heat, and 
combined stresses have been identified through advances 
in metabolomic platforms (Obata et al. 2015; Zinta et al. 
2018; Lawas et al. 2019; Janni et al. 2020). These differ-
entially expressed metabolites in response to combined 
stress activate defense mechanisms to protect cellular 
activity, minimize ROS activity, enhance HSP activity, 
and induce regulatory TF genes and hormonal signaling. 
A large-scale metabolomic study in maize leaf exposed to 
heat, drought, and combined stresses revealed changes in 
numerous amino acids (tryptophan, proline, alanine, valine, 
isoleucine, glycine, serine, etc.), sugars (maltose, myoino-
sitol, galactinol), and organic acids (glycerate, threonate) 
that enabled plants to adapt under stress (Obata et al. 2015). 
The authors suggested that most of the metabolic changes 
due to combined drought/heat stress were similar to the sum 
of those from individual drought or heat stress. A series of 
metabolic alterations, especially in various sugars, amino 
acids, and fatty acids, were captured in Arabidopsis grown 
under combined drought/heat stress in an enhanced  CO2 
environment (Zinta et al. 2018). For carbohydrates, starch 
levels declined due to an increase in amylase activity. For 
amino acids, elevated activities of pyrroline-5-carboxylate 
synthase and pyrroline- 5-carboxylate reductase contrib-
uted to proline synthesis and the upregulation of threonine 
synthase, indicating that diverse defense molecules are 
activated under combined drought/heat stress. Increased 
abundance of saturated fatty acids and reduced synthesis 
of unsaturated fatty acids would reduce membrane damage 
from oxidative stress under heat stress (Zinta et al. 2018). In 
rice, a combined metabolomics and transcriptomics analysis 
of floral organs, including anthers and pistils, of genotype 
Moroberekan (heat-sensitive) and genotype N22 (heat-tol-
erant) under normal, drought, heat, and combined stresses 
revealed that sugar metabolism is the major determining fac-
tor mediating sensitivity to combined drought/heat stress 
in Moroberekan due to the higher expression of ‘carbon 
starved anther’ genes (Li et al. 2015a, b). In contrast, N22 
displayed increased expression of MST8 sugar transporter 
and cell wall invertase genes to mediate high sink strength. 
Comprehensive metabolome profiling of flag leaves, spike-
lets, and developing seeds of contrasting rice genotypes 
(N22, Dular, and Anjali) using gas chromatography–mass 
spectrometry (GC–MS) under drought, heat, and combined 

stresses revealed up to 60 metabolites (including various 
amino acids, sugars, alcohols, and acids) specific to organ, 
cultivar, or stress (Lawas et al. 2019). Increased accumula-
tion of isocitric, glycerol-3-P, and galactaric acids occurred 
during flower, spikelet, and seed development in N22 and 
Dular cultivars, which are more drought tolerant than Anjali 
(Lawas et al. 2019). Elevated glucose, fructose, 1-ketose, 
and raffinose levels occurred in flowers and spikelets of N22 
and Dular. Increased accumulation of polyamines, putres-
cine, ornithine, and spermidine occurred in Anjali (sensitive 
to combined drought/heat stress) during flower and spikelet 
development; however, these compounds were absent in N22 
and Dular. Increased abundance of glutamic acid, arbutin, 
and vanillic acid occurred in flag leaves of N22 (combined 
drought- and heat-tolerant cultivar) during flowering and 
grain filling (Lawas et al. 2019).

The metabolites obtained in response to combined 
drought/heat stress could be used as biomarkers for devel-
oping rice cultivars that tolerate combined drought/heat 
stress. Plants that recruit novel metabolic mechanisms under 
combined drought/heat stress may differ when subjected to 
these stresses alone. Despite metabolomic efforts to deci-
pher diverse novel metabolites in response to combined 
stress, various signaling pathways and complex gene net-
works need to be resolved using a system biology approach 
and robust bioinformatics tools. Metabolomics studies are 
mostly undertaken on plants grown indoors or in growth 
chambers. Future studies in the field are needed to gain a 
realistic picture of the differentially expressed metabolites 
produced under various stress conditions, including com-
bined drought/heat stress (Raza 2020).

Genetic engineering, a powerful functional 
genomics approach for combined drought‑ 
and heat‑tolerant crops

Genetic engineering approaches are used extensively for 
deciphering the function of various stress-responsive 
gene(s). How these genes confer stress tolerance has been 
explored in various plant species in the last two decades 
using this approach. The transgenic approach could be used 
to introduce/pyramid combined drought/heat tolerance in 
crop plants to sustain plant adaptation and improve yield 
under the challenging global climate changes. The intro-
duction of various regulatory gene(s), ranging from NAC, 
WRKY, DREB, ERF, MYB, and AVP1 to OsSIZ1 that either 
upregulate or downregulate downstream target genes through 
genetic engineering can enhance abiotic stress tolerance in 
crop plants (El-Esawi and Alayafi 2019). Overexpression 
of transgenic cytokinin oxidase/dehydrogenase CKX1 gene 
in Nicotiana tabacum L. increased combined drought/heat 
tolerance by increasing root system, enhancing stomatal 
conductance, and inducing the proline biosynthetic gene 
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P5CSA playing a critical role in osmoprotection (Macková 
et al. 2013). NAC (NAM, ATAF1/2, and CUC2) is a well-
recognized element involved in regulating various genes and 
gene networks related to abiotic stress tolerance (Puranik 
et al. 2012). Fang et al. (2015) reported overexpression of 
the SNAC3 gene in rice, which mediated combined drought/
heat tolerance by inhibiting target genes (LOC_Os02g02400, 
LOC_Os04g14680, LOC_ Os02g34810) (see Table  5) 
involved in excessive ROS activity and minimizing electro-
lyte leakage under combined stress. In transgenic rice, mini-
mal ROS production, low electrolyte leakage, and enhanced 
grain yield resulted from overexpression of OsRab7 under 
combined water and elevated temperature stress (El-Esawi 
and Alayafi 2019). Increased activity of antioxidant enzyme 
peroxidases and catalase, reduced electrolyte leakage and 
decreased malondialdehyde and hydrogen peroxide contents 
occurred in transgenic wheat overexpressing the AtWRKY30 
gene, relative to their wild-type counterparts, indicating the 
role of this gene in drought and heat tolerance in wheat (El-
Esawi et al. 2019).

Casaretto et al. (2016) reported that enhanced activa-
tion of ROS-scavenging activity, upregulation of several 
genes related to stress hormone signaling, HSPs and chap-
eronins, and cell wall development due to overexpression 
of the OsMYB5 gene increased combined drought/heat 
stress tolerance in transgenic maize. Likewise, overexpres-
sion of the rice SUMO E3 ligase OsSIZ1 gene conferred 
water and heat stress tolerance in creeping bentgrass (Li 
et al. 2013), cotton (Mishra et al. 2017) and Arabidopsis 
(Mishra et al. 2017). The significant role of Arabidopsis 
vacuolar pyrophosphatase gene AVP1 mediating multiple 
abiotic stresses, including drought and salinity tolerance, 
has been established in Arabidopsis (Gaxiola et al. 2001; 
Li et al. 2005), cotton (Pasapula et al. 2011), and peanut 
(Qin et al. 2013). Co-overexpression of OsSIZ1 and AVP1 
genes conferred combined drought/heat tolerance in Arabi-
dopsis (Esmaeili et al. 2019). Similarly, co-overexpression 
of OsSIZ1 and AVP1genes enhanced fiber yield in transgenic 
cotton, relative to the wild type, by upregulating cell wall 
synthesis, antioxidative metabolism, and HSP genes under 
combined drought/heat stress (Esmaeili et al. 2021). Co-
overexpression of AVP1 and Larrea Rubisco activase (RCA )  
gene in transgenic Arabidopsis aided in combined drought/
heat tolerance by minimizing the effect on photosynthetic 
processes, increasing root length, and enhancing seed yield, 
relative to the wild type (Wijewardene et al. 2020). Geneti-
cally engineered wheat and Arabidopsis had increased tol-
erance to combined drought/heat stress due to overexpres-
sion of the phosphoenolpyruvate carboxylase kinase-related 
gene, enhancing the expression of ABI3 (ABA signaling) 
and HSP17.6A genes (Zang et al. 2018). These transgenic 
plants also had lower electrolyte leakage and water loss than 
their wild-type counterparts.

Several transcriptional co-activators, e.g., multi-protein 
bridging factor1c (MBF1c), contribute to abiotic stress tol-
erance in various plants (Suzuki et al. 2005). In this con-
text, combined water and heat stress tolerance in transgenic 
Arabidopsis occurred due to the overexpression of MBF1c, 
which enhanced ethylene activity (Suzuki et al. 2005). Col-
lectively, the transgenic approach could be valuable for 
manipulating various regulatory genes and genes related to 
activating antioxidant mechanisms and HSPs, accumulating 
osmolytes, and protecting photosynthetic apparatus under 
combined drought/heat stress.

Augmentation of CRISPR/Cas9-based genome editing 
technology has been used to incorporate heat stress tolerance 
by manipulating NAC TF in rice (Liu et al. 2020) and BZR1 
TF in tomato (Yin et al. 2018) and modulating YODA and 
HSP90.1 in Arabidopsis (Samakovli et al. 2020). Examples 
of improved drought stress tolerance using CRISPR/Ca9 
mediated technology include engineering of AREB1/ABF2 
regulating ABA in Arabidopsis (Roca Paixão et al. 2019), 
ARGOS8 regulating ethylene in maize (Shi et al. 2017), and 
OsNAC14 regulating ABA biosynthesis in rice (Shim et al. 
2018). However, the potential of this technique has not yet 
been harnessed for developing combined drought/heat toler-
ance in plants. This powerful technology could be used to 
manipulate specific regulatory gene(s)/multiple genes/hap-
lotypes controlling combined drought/heat tolerance with 
greater precision for designing future climate-resilient crops.

Concluding remarks and future directions

Under the changing global climate, combined drought/
heat stress episodes are increasing in agricultural areas and 
becoming a significant global challenge for food security. 
Crop responses to combined stress differ from those of 
individual stresses. However, combined drought/heat stress 
significantly affects key physiological, morphological, bio-
chemical, and molecular processes, resulting in serious yield 
losses for many crops (see details in Cohen et al. 2020).

Screening crop germplasm is an affordable and viable 
option for identifying crop genotypes tolerant to this com-
bination. Exploring various landraces and gene pools could 
further identify adaptive traits contributing to plant adap-
tation to combined stresses (Mickelbart et al. 2015). The 
introduction of novel genetic variants/beneficial alleles 
contributing to combined drought/heat tolerance through 
pre-breeding activity needs urgent attention (Kilian et al. 
2021). Traditional QTLs mapping, GWAS, and WGRS 
approaches could elucidate the underlying QTLs/genetic 
determinants/haplotypes stress tolerance across the whole 
genome (Templer et al. 2017; Sukumaran et al. 2018; Yuan 
et al. 2019). These genomic regions could be transferred 
into elite crop cultivars using genomic-assisted breeding. 
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Advances in functional genomics, including transcriptomics, 
proteomics, and metabolomics, could shed light on possible 
candidate gene(s), gene networks, signaling molecules, can-
didate proteins, and metabolites contributing to combined 
stress tolerance (Zhao et al. 2016; Zandalinas et al. 2018; 
Lawas et al. 2019). However, phenotyping combined stress 
tolerance remains challenging due to its complex genetic 
inheritance and high G × E interaction. Therefore, the use 
of various emerging phenomics facilities, machine learning, 
and deep learning approaches will be crucial for improv-
ing our understanding of combined stress response in target 
environments (Singh et al. 2018).

Robust genetic engineering techniques and emerging 
CRISPR/cas9-based genome editing technologies could 
allow us to tailor crops tolerant to combined drought/heat 
stress through genome editing of targeted regions control-
ling stress tolerance. A holistic approach encompassing 
plant breeding, physiology, molecular biology, and various 
‘omics’ is needed to ensure global food security under the 
increasing prevalence of combined stress environments (see 
Fig. 2). Scientists in the plant ‘omics’ community should 

investigate crop stress responses in the field, as they are 
more valuable than laboratory-only studies, to improve our 
understanding of the complex stress tolerance mechanisms 
to accelerate the development of stress-tolerant cultivars.
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Fig. 2  Improving combined drought and heat tolerance in crop plant 
through integrated ‘omics’ approach. Among the omics approaches, 
genomics can be deployed to unveil the possible candidate gene(s) 
governing combined drought and heat tolerance through bi-paren-
tal, genome wide association studies mapping and resequencing of 
large crop germplasm. Transcriptomic, proteomic and metabolomic 
approaches could greatly inform us the functional role of various 
gene(s)/QTLs and their complex networks controlling combined 
drought and heat tolerance in plant at phenotypic level. In paral-
lel, transgenic and genome editing could help us in designing com-
bined drought and heat tolerant by base addition/deletion in targeted 

genomic region with great precision. Besides, emerging speed breed-
ing and novel breeding approach could enhance the crop breeding 
cycle. Thus, integration of all these omics approach and novel breed-
ing tools could improve crop performance under combined drought 
and heat stress. GWAS genome-wide association study; GBS geno-
typing-by-sequencing; NGS next generation sequencing; SNP sin-
gle nucleotide polymorphism; RGB Red–Green–Blue; MALDI-TOF 
matrix-assisted laser desorption/ionization-time of flight; LC–MS 
liquid chromatography–mass spectrometry; FT-MS  Fourier transform 
mass spectrometry; GC–MS gas chromatography–mass spectrometry; 
NMR nuclear magnetic resonance
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Approaches Toward Developing Heat
and Drought Tolerance in Mungbean 10
Shikha Chaudhary, Manu Priya, Uday C Jha, Aditya Pratap,
Bindumadhava HanumanthaRao, Inderjit Singh, P. V. Vara Prasad,
Kadambot H. M. Siddique, and Harsh Nayyar

Abstract

The projected rise in the global temperature and water scarcity will increase the
frequency and intensity of heat and drought stresses. Agriculture is the main
sector that is severely affected by these stresses and going to threaten global food
security. Mungbean is the major summer-season food legume and of paramount
importance because of its protein-rich seeds and have the ability to restore soil
fertility. But these stresses adversely affect the overall growth and development of
this crop as revealed through altered morphology, physiology, enzymatic
activities, and eventually declined its quality as well as quantity. Reproductive
stage is extensively studied and more susceptible toward heat stress as various
processes such as pollen germination, pollen load, pollen tube growth, stigma
receptivity, ovule fertility, and seed filling are reduced to a much extent leading to
poor yield. The present review summarizes the effects of heat and drought stress
on the vegetative, reproductive growth, physiological functions, and cellular
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activities of mungbean. Furthermore, defense mechanisms employed by the
plants that comprise elevated productions of HSPs, antioxidants, osmolytes,
and secondary metabolites are also considered. Based upon such responses of
the plants, various approaches, which can be employed by the breeders for
developing stress-tolerant varieties comprise physiological, biochemical, molec-
ular traits, and agronomic strategies. These approaches would prove to be valu-
able for getting insights into the physiological and molecular mechanisms
governing heat and drought tolerance and will pave the way for engineering the
plants.

Keywords

Mungbean · Heat stress · Drought stress · Climate resilience · QTL

10.1 Introduction

Mungbean or green gram (Vigna radiata L. wilczek) is grown on almost seven
million hectares of land worldwide (Abid et al. 2018). Vigna radiata is the most
widely distributed of the six Asiatic Vigna species (Dahiya et al. 2015). It is an
important grain legume and cash crop that is widely farmed in South, East, and
Southeast Asia as well as in South America and sub-Saharan Africa (Akhtar et al.
2015). Due to its photo-insensitivity and short duration, it can be used in a variety of
intensive cropping techniques (Dahiya et al. 2015; Sehrawat et al. 2013). The crop is
indigenous to India (Ardalani et al. 2015) and its seeds and sprouts are widely
utilized as a fresh salad, vegetable, or staple meal not just in Asian countries but
also in the Western world (Sehrawat et al. 2013). Around six million hectares of land
are grown for the mungbean crop worldwide, accounting for around 8.5% of total
pulse area (Chand et al. 2018). Mungbean is high in easily digestible proteins, carbs,
fibers, minerals, vitamins, antioxidants, and other phytonutrients, making it a good
candidate for malnutrition mitigation. The crop has a yield potential of roughly
2 tonnes per hectare, with average productivity of about 0.5 tonnes per hectare
(Sehrawat et al. 2013). Mungbean is more heat and drought tolerant than other pulse
crops, but it is still affected by severe abiotic stresses like low or high temperatures,
insufficient or excessive water, high salinity, and low soil fertility (Reddy 2009).

Spring (February/March), summer (March/April), and kharif (June/July) are the
three main seasons for mungbean cultivation on the Asian continent (Basu et al.
2019). When grown in rainfed areas, seedlings are exposed to water stress due to
decreased water supplies throughout these months. Water scarcity causes stress in
plants at any stage (Dias et al. 2010). Due to a predicted increase in the occurrence of
water shortfalls, the global drought-restricted zone is expanding, posing a threat to
mungbean crop production worldwide (Nair et al. 2019). For the growth of
mungbean, sufficient water availability is more important than any other environ-
mental trigger (Sehrawat et al. 2013). Water scarcity in the seedling stage makes it
difficult to produce healthy seedlings and reduces overall productivity (Dahiya et al.
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2015). Mungbean (Vigna radiata L. Wilczek) is also a unique source of protein
supplement with a plethora of medicinal properties and is a climate-friendly crop
(Chikukura et al. 2017). The plant is an annual legume of the Fabaceae family that
plays a critical role in nutrition in all developing countries (Pratap et al. 2016). Thus,
during the last few decades, there has been an increase in attempts to develop and
expand the production of this pulse crop (Bazaz et al. 2016). Consuming mung beans
in combination with cereals tends to improve the protein quality, as these grains are
fairly high in sulfur-containing amino acids (Fang et al. 2017) and provide a cost-
effective source of easily digestible protein for vegetarians. As a result, mungbean
may sometimes be referred to as “poor man’s meat” (Hall 1992). Mungbean has also
been claimed to be suitable for youngsters due to its decreased flatulence and
hypoallergenic qualities (Dahiya et al. 2015; Ali et al. 2018).

The crop is usually grown in the summer and fall at an optimal temperature range
of 27–30 !C and is primarily cultivated in dry and semiarid tropics at elevations
<2000 m (Singh et al. 2017). However, the high degree of fluctuation in climatic
conditions, such as rising temperatures and uncertain water scarcity situations, is
restricting mungbean productivity during its cropping season (Singh et al. 2017).
Heat stress is one of the primary issues influencing mungbean crop production
during summers in the current global climatic condition (Martinez et al. 2012).
Hence, the primary goal of mungbean breeders is to boost the genetic potential of
genotypes under conditions of heat stress (Mariani and Ferrante 2017).

Numerous varieties have been produced that are resistant/tolerant to abiotic
(drought, salinity, and heat) stresses (Mariani and Ferrante 2017). Drought and
heat are some of the most critical threats gaining considerable attention from farmers
and researchers due to their major influence on agriculture (Ashraf and Foolad
2007). The situation is worsening due to erratic changes in the nature of the
environment and escalated frequency of global climate change; henceforth, it is
imperious to secure food supplies for the future by increasing the survivability of
important agricultural crop plants (Joshi et al. 2016). Due to their restricted genetic
base, these types become prone to stressors, and their average production has
remained nearly constant over the last few decades (Hanif and Wahid 2018).
However, Mungbean wild relatives can be used to increase genetic diversity and
to introduce beneficial characteristics into cultivated mungbean lines (Jiang et al.
2015). There is an urgent need for extensive study of genetic resources, cytological,
genetic, genomic, and tissue culture research to elevate this critical crop’s vertical
and horizontal base to that of other key legumes (Nair et al. 2019). In comparison to
other legume crops, the publications on the development of transgenic mungbean
demonstrate a lack of an efficient plant genetic transformation methodology com-
patible with in vitro regeneration. Heat and drought stress often occur simulta-
neously, and due to global climate change, this kind of phenomenon occurs more
frequently and severely, which poses detrimental effects on plants (Nahar et al.
2015). Hence, it is critical to incorporate novel technologies like transgenics
approaches, genome editing, conventional breeding, and embryo rescue procedures
to enhance its productivity under heat and drought stress conditions (Devasirvatham
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et al. 2012). However, little research has been done on this issue, which should be
expanded to allow for greater use of wild mungbean species.

10.2 Various Traits for Heat Stress Tolerance in Mungbean

10.2.1 Morpho-Physiological Trait Variations for Improving Heat
Tolerance

Heat stress is frequently associated with drought, high solar irradiation, and high
wind velocity, and the combination of these conditions can exacerbate damage even
in adequately watered plants (Hall 1992). A plethora of research has established
mungbean’s great susceptibility to rising temperatures (Teixeira et al. 2013; Jha et al.
2017).

High-temperature stress has a detrimental effect on plant growth and develop-
ment as well as on a variety of physiological activities (HanumanthaRao et al. 2016).
For example, extended exposure to high temperatures may cause mungbean seeds
(Phaseolus aureus Roxb.) to lose vigor, impairing seedling emergence and estab-
lishment (Devasirvatham et al. 2012; Kumar et al. 2011). Photosynthetic rate, which
is determined by leaf area and dry matter production, is related to the number of pods
and seeds. With increased leaf area, the percentage of solar radiation intercepted and
the rate of dry matter synthesis enhanced (Hamid et al. 1981). Temperatures above
45 !C, which occur frequently throughout the flowering cycle, can cause flower
abortion and production losses. Sharma et al. (2016) used Temperature Induction
Response (TIR) and physiological screening methodologies at the seedling and
whole plant levels to assess the influence of high temperature on different mungbean
lines for vegetative and reproductive performance. The most promising tolerant lines
were chosen for further study at the plant level. These lines were evaluated for
growth and yield features at two sowings: normal sowing (NS), where day/night
temperatures throughout the reproductive stage were between 40 and 28 !C, and late
sowing (LS), where temperatures were higher (>40/28 !C). Leaf rolling and chloro-
sis were observed on the leaves of LS plants and hastened phenology resulted in a
significant reduction in leaf area, biomass, flowers, and pods. Intriguingly, the length
of flowering and podding was also reduced (Sharma et al. 2016).

High-temperature treatment (50 !C for 10, 20, 30 min) dramatically lowered seed
germination and vigor index in mungbean (Piramila et al. 2012). Furthermore, high
temperatures, particularly those more than 40/30 !C (max/min), impede growth and
produce chlorosis in mungbean (Kumar et al. 2011). This is connected with a drop in
leaf hydration status and increased oxidative stress, which has been observed to be
alleviated by exogenous ascorbic acid treatment (Kumar et al. 2011). Sharma et al.
(2016) also discovered heat-induced leaf blistering, leaf rolling, and chlorosis in
mungbean plants. Other effects of heat stress on mungbean included leaf curving,
leaf withering, leaf yellowing and blackening, plant height reduction, and decreased
leaf, branch, and biomass numbers (Kaur et al. 2015). Heat stress also reduces the
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photosynthetic ability and crop productivity; however, the genetic reason for this is
unknown and needs detailed insight in the future (Biswash et al. 2014).

10.2.1.1 Reproductive and Yield Traits for Heat Stress Tolerance
Although plants have the natural ability to maintain their metabolism and vegetative
development under a wide range of temperature regimes, reproductive growth
showed a significant sensitivity to warmer temperatures (Abou-Shleel 2014).
Rawson and Craven (1979) conducted extensive research on the effects of high
temperatures on blooming in several mungbean genotypes exposed to lengthy
photoperiods and high mean temperatures (24–28 !C).

Extreme temperatures cause late flowering, tissue damage in male and female
reproductive structures, and flower and pod abortion (Young et al. 2004; Zinn et al.
2010; Firon et al. 2012; Djanaguiraman et al. 2013). Increased temperature also
affects the shape of anther and pollen, reduces pollen content, retards their dehis-
cence, and may result in full male sterility (Awasthi et al. 2015; Djanaguiraman et al.
2013). This modification in the anther dehiscence and pollen release process is
frequently caused by high relative humidity during periods of heat stress (Bansal
et al. 2014; Jiang et al. 2015). In comparison to female gametophytic tissue, elevated
temperatures have a greater detrimental effect on male gametophytic development,
affecting pollen germination, viability, and pollen tube elongation (Jiang et al. 2015).
Across all stages of pollen development, the formation of meiocytes and
microspores showed greater sensitivity to heat, as demonstrated in a variety of
experiments on various crop species (Monterroso and Wien 1990; Ahmed et al.
1992; Devasirvatham et al. 2012). As a result of these irregularities in anther and
pollen formation, pollination and fertilization events are disrupted, significantly
reducing fruit and pod set (Bita and Gerats 2013). The assessment of pollen
thermotolerance and the reaction to heat stress is a critical topic for plant geneticists,
agronomists, and biologists interested in improving current germplasm (Mittler et al.
2012; Devasirvatham et al. 2012).

High temperatures (>40 !C) have a direct effect on flower maintenance and pod
development in mungbean, accounting for up to 79% of flower shedding (Kumari
and Verma 1983). In a similar investigation, flower preservation under heat stress
was examined in 77 mutants produced from NM 92 and 51 recombinants derived
from three crossings, namely, VC1482C NM92, VC1560D NM92, and NM98
VC3902A (Khattak et al. 2006). No genotype was completely resistant to flower
shedding, although NM 92 was susceptible to the same feature under conditions of
extreme heat (>40 !C) (Khattak et al. 2006). Additionally, shedding was detected
only in opened flowers and not in pods at any developmental stage; further humidity
changes had no influence on floral shedding (Khattak et al. 2006). Similarly, the
detrimental effects of heat stress (45/25 !C) on two mungbean cultivars (SML
832 and SML 668) were evaluated, with a particular emphasis on the reproductive
stage (Kaur et al. 2015). Their findings indicated that temperatures greater than
35/25 !C, 43/30 !C, 45/32 !C (day/night) were severely detrimental to reproductive
activities and also had a significant effect on the crop’s potential output (Kaur et al.
2015). In mungbean, high temperatures during the early phases of development and
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reproduction have a detrimental effect on seed yield, owing to pollen viability,
reduced fertilization, and complete flower shedding (Kaur et al. 2015). Thus,
screening and selection of mungbean genotypes capable of withstanding high
temperatures throughout reproductive phases are critical for increasing the crop’s
growth and output (Singh and Singh 2011). Alagupalamuthirsolai et al. (2015) also
investigated reproductive heat stress in 20 high-yielding mungbean cultivars using
stress indices, yield-contributing attributes, and growing degree days (!C) and found
that all genotypes exhibited significant variance in yield traits under heat stress.

Recently, a study was done to determine the effect of heat stress on the vegetative
and reproductive functions of 41 mungbean genotypes grown under managed
growth circumstances (Sharma et al. 2016). We identified a few selective heat-
tolerant mungbean lines that can be used in future breeding projects (Sharma et al.
2016). Another study examined the variation in response of 28 mungbean genotypes
to heat stress (45/30 !CNAc-HT, unacclimated), particularly during the reproductive
stage, and to pre-acclimation of different genotypes to elevated temperatures of
35/28 !C (Ac-HT, acclimated) prior to exposing them to high temperatures. The
total pollen count was dramatically reduced from 88/mm2 in CON (28 !C/24 !C,
control) to 50/mm2 in Ac-HT and 40/mm2 in NAc-HT plants, with evident genotypic
variation, implying that acclimated plants (Ac-HT) maintained a greater pollen
number and viability than non-acclimated plants (NAc-HT) (Patriyawaty et al.
2018).

Terminal heat stress is a typical problem with mungbean in India, particularly
during the spring/summer season (HanumanthaRao et al. 2016). During the early
growth period, high temperatures, greater than 40 !C, result in a significant reduction
in yield potential due to reduced fertilization, pollen sterility, and a rapid rate of
flower shedding (HanumanthaRao et al. 2016). Rainey and Griffiths (2005)
demonstrated that the abscission of reproductive structures was the primary determi-
nant of yield in a variety of annual grain legumes when subjected to heat stress. Very
little research has been conducted on the effects of heat stress on mungbean,
particularly on the reproductive stage (Devasirvatham et al. 2012). Therefore, to
boost mungbean productivity under heat stress conditions, it is critical to character-
ize the genetic variation for heat tolerance in the core germplasm and to investigate
the mechanisms underlying this crop’s heat sensitivity (Devasirvatham et al. 2012;
Kumar et al. 2011). On the basis of grain yield in normal and heat stress conditions,
eight heat indices were calculated. Under both normal and heat stress conditions, the
highest significant positive correlations were established between mean productiv-
ity, geometric mean productivity, stress tolerance index, and yield indices. SML
1186, NDM 12-308, IPM 02-4, and Smrat genotypes were identified as having a
high stress index score and could be used in mungbean breeding efforts to introduce
and produce heat-tolerant promising varieties (Ahmad et al. 2021).

Furthermore, to boost mungbean growth and productivity, genotypes that can
endure high temperatures during reproductive stages must be screened and selected
(Singh and Singh 2011).
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10.2.2 Biochemical Traits Modulating Heat Tolerance

The mungbean (Vigna radiata L. Wilczek) is one of the most significant crops in the
world (Kumar et al. 2013; Farooq et al. 2017). It has a production potential of around
2000 kg per hectare; however, productivity is only 842 kg per hectare (BBS 2016).
The ideal temperature for mungbean yield is between 28 !C and 30 !C (Poehlman
1991). Applying heat stress during the flowering period allows partitioning to the
pods and seed development. Following a period of 15 days of stress, the data were
collected on seed production and quality at maturity, as well as physiological and
biochemical parameters were also evaluated (Hanif and Wahid 2018). According to
their report, high temperature resulted in a significant increase in H2O2 and MDA
levels as well as a decrease in net photosynthesis, stomatal conductance, and water
content (Hanif and Wahid 2018). Similarly, a significant decrease in sucrose con-
centration was observed in the leaves and anthers, along with a decrease in the
activities of sucrose-synthesizing enzymes (sucrose synthase, sucrose phosphate
synthase) and hydrolyzing enzymes (acid invertase) due to heat stress, which
could be a critical factor affecting reproductive function and yield attributes (Kaur
et al. 2015). In another study, an increase in MDA content was noticed in seedlings
treated with deadly temperature (40 !C) at any harvest but decreased when seedlings
were pretreated with 40 !C prior to lethal stress (Mansoor and Naqvi 2013).
Furthermore, there was a variable response of antioxidant enzyme activity among
different genotypes. POD and SOD activities increased under stress in all genotypes
except NM 20-21, whereas APX activity increased in all genotypes. However, CAT
activity decreased under stress for NM 19-19 and 121-123 but increased for NM
20-21 and NCM 89. Under heat stress, NM 19-19 had a low MDA concentration and
elevated antioxidant enzymes, indicating that it was the most thermotolerant geno-
type. However, elevated MDA levels and low antioxidant enzyme activity were
found in NM 20-21, suggesting that it is the least thermotolerant genotype (Mansoor
and Naqvi 2013). In another study, heat stress has caused significant accumulation of
H2O2 and MDA that decreased stomatal conductance and water use efficiency,
chlorophyll a and b, and total chlorophylls and net photosynthesis in the sensitive
varieties while increased carotenoids contents in the tolerant varieties (Hanif and
Wahid 2018).

10.2.3 Multi-Omics Approaches to Understand Heat Tolerance
in Mungbean

10.2.3.1 Genomics Approaches
Mungbean is a quantitative short-day legume grown across varied locations,
environments, and seasons (Ohama et al. 2017). The crop has inherent intrinsic
tolerance mechanisms to cope with different environmental stressors (Pratap et al.
2016). Despite its wide growth and cultivation, it is exposed to high temperatures
and also faces photo-thermoperiod sensitivity. Considerable efforts have been made
toward the development of input-responsive, high-yielding, disease-resistant, and
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short-duration varieties of mungbean in the past three to four decades (Priya et al.
2020). However, breeding techniques for heat stress resistance have largely
remained untouched, consequently posing serious constraints to mungbean produc-
tion (Pratap et al. 2016). In the current era, the advancements in “omics”
technologies, particularly genomics, proteomics, metabolomics, and
transcriptomics, have enabled unbiased and direct monitoring of the factors affecting
Mungbean growth and yield in response to environmental constraints (Naveed et al.
2015). Omics tool is proving highly beneficial in deciphering the complex molecular
mechanisms underlying plant growth, development, and their interactions with the
environment, which ultimately determine the nutritional value, yield potential (Raina
et al. 2016), and the agricultural inputs of crop. Substantial genetic and genomic
resources of mungbean are available now, which can be exploited for the develop-
ment of climate-resilient cultivars (Varshney et al. 2014). Different climate-smart
traits can be incorporated in mungbean through current advancements in breeding
techniques which will help them to adapt to varied climates and perform well across
environments (Varshney et al. 2014).

At the present scenario of global warming and changing climate, breeders and
plant researchers are working on the foundational work of implementation of
genomic technologies (Yadav et al. 2010). The World Vegetable Centre and the
Australian National Mungbean Improvement Program have dramatically increased
the yields, reliability, and sustainability of mungbean crops worldwide through
conventional breeding programs (Varshney et al. 2014). The genome sequencing
of diverse sets of mungbean germplasm aims at quantifying the genetic diversity
present among the world’s mungbean gene pool collection and to decipher genes
associated with agronomically beneficial traits (Kajla et al. 2015).

The World Vegetable Center (AVRDC) has created a mungbean mini-core set,
which comprises a significant fraction of the variety in the WorldVeg gene bank for
this species (HanumanthaRao et al. 2016). This site contains a significant genetic
resource for identifying new features that can be used in breeding programs in the
future. There have been a variety of breeding procedures used to increase genetic
variability in green gram, but hybridization and induction of mutations are seen to be
the most promising for selecting acceptable variants from a segregating population
(Kalaji et al. 2016). To generate varieties with pyramided traits, combining tradi-
tional breeding methods with molecular breeding technologies is beneficial (Nair
et al. 2019). With the increasing availability of genomic technologies and resources
for legumes, a more complete and in-depth genome mapping of green gram is critical
for genetic improvement (Pratap et al. 2015). Systematic efforts must be made to
investigate the physiological and biochemical regulation of biotic and abiotic
stresses, as well as the entire profile of genes, proteins, and metabolites that confer
resistance/tolerance, so that they can be modified to generate improved mungbean
cultivars (Nair et al. 2019). Furthermore, by linking the sequence and phenotyping
data regions of the genome associated with beneficial traits, the photosynthetic
pathways, and water-use efficiency can be targeted (Kaushal et al. 2016). Once
identified, these pathways can be manipulated directly using genome-editing tools,
hence reducing current breeding efforts by more than half (Nair et al. 2019). As
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abiotic stressors pose an extensive and immediate risk, these technologies and plant
scientists needed to address the present issues in detail.

10.2.4 Exploring Gene Families and Transcriptional Factors as Heat
Responsive Markers

To address the challenge of the hidden hunger and to ensure the nutritional security
of future generations as proposed by the FAO (Food and Agriculture Organization),
pulse production must be doubled by 2050; however, various environmental
stressors are confronting this goal (Mannur et al. 2019; Kim et al. 2015). Among
all environmental challenges, heat stress has the broadest and most far-reaching
influence on legumes and is affecting agricultural crops more frequently and more
severely (Hatfield and Prueger 2015). With the introduction of various physiologi-
cal, molecular, and genetic bases of heat stress tolerance mechanisms, cultivated
plants have gained a major attention for intense research on how they can tolerate or
avoid heat stress through natural genetic variation or by using DNA technologies,
mutational breeding, or genome editing to create new variations (Sgobba et al.
2015). Since past few decades, the identification of Hsf genes in many species has
greatly increased our knowledge of the molecular mechanisms of plant developmen-
tal and defense processes (Guo et al. 2016; Wang et al. 2016). As mungbean is an
economically important legume crop of the world, the emergence of its genetic
database allows functional analysis of mungbean genes (Kang et al. 2014).
Mungbean’s genetic diversity has been conserved in various germplasm collection
units globally. The major collection centers are developed in China, India,
Philippines, Taiwan, and the United States (Liu et al. 2017) and by using genetic
diversity at these centers genetic base of mungbean cultivars can be enlarged.
Generally, screening of large collections for required traits is economically as well
logistically challenging for mungbean breeders (Priya et al. 2020). The establish-
ment of subsets of large germplasm collections can make screening more practical,
but this procedure is laborious and costly (Schafleitner et al. 2015). In a recent study,
24 VrHsf genes were identified in mungbean and their characteristics were
investigated using the mungbean genome database. Chromosome location analysis
showed that out of 11 mungbean chromosomes, VrHsf genes are located on 8 and
7 duplicated gene pairs had formed between them. Furthermore, transcriptional
patterns of VrHsf genes varied among different tissues, suggesting their involvement
in plant growth and development. Identified multiple stress-related cis-elements in
promoter regions of VrHsf and they observed that the expression of maximum VrHsf
genes was influenced by different stress conditions, indicating their potential role in
stress resilience pathways (Priya et al. 2020). Currently, the WRKY transcription
factors are gaining importance for genomic and functional studies due to their
seminal participation in plant growth, development, metabolism, and in the gover-
nance of multiple stress-defensive pathways. The recent release of draft genome
sequences of Mung bean (Vigna radiata) has paved the way for the characterization
of WRKY gene family in this crop. The genome-wide analysis of WRKY
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transcription factors in mungbean led to the identification of two WRKY TFs
(Vradi05g21980 Vradi0158s00480) for heat, drought, and osmotic stress tolerance
(Zandalinas et al. 2018).

Regardless of the immense economic importance of the mungbean crop, the
genomic studies and transcriptional analysis of this crop are still inadequate and
need detailed insight to develop heat resilience under stressful environmental
conditions.

10.2.5 Agronomic Approaches to Understand Heat Tolerance
in Mungbean

Despite all of the efforts to improve green gram cultivars, the crop’s yield potential
remains poor due to biotic and abiotic causes (Mariani and Ferrante 2017). Poor
yield potentiality, indeterminate growth, asynchronous maturity, low harvest index,
faulty plant type, low partitioning efficiency, small seed size, and vulnerability to
biotic and abiotic stressors are the key restrictions (Keatinge et al. 2011). As a
leguminous crop, mungbean (Vigna radiata) may replenish soil fertility, prevent
land degradation, and boost crop productivity and livestock raising while preserving
the ecosystem (Priya et al. 2020). Cultivation of such dual-purpose leguminous
crops improves overall productivity, conserves natural resources, and aids in
generating greater output from the agricultural system (Fedoroff et al. 2010).

Seeding time and plant population are two of the most important factors
contributing to lower pulse production. Managerial methods must be adjusted in
the shifting scenario of abiotic and biotic stress to ensure greater crop output (Wang
et al. 2015). The agro-ecological conditions play an important influence in deter-
mining when to plant. Planting time is critical, as it has a substantial impact on
growth, development, and output (Waraich et al. 2012; Osakabe et al. 2014; Rasheed
et al. 2016). The best time to plant mungbean depends on the cultivar (Sakata et al.
2010). As planting timings differ greatly among cultivars, precise planting schedules
must be followed to achieve maximum output. Furthermore, due to an increase in
grain weight and other production features, early sowing may also improve final
yield and biomass production in mungbean (Sun et al. 2014). Due to the shortened
growth cycle caused by late seeding, the interception of radiations was reduced,
resulting in a drop in total dry matter accumulation and, as a result, inferior yields
(Rasheed et al. 2011). To have a good yield, you need to pick the right cultivar and
seed it at the right time (Reardon and Qaderi 2017). Mungbean cultivars respond to
sowing dates and growing seasons in different ways. As a result, various kinds of
mungbean cultivars should have different optimal planting dates (Reddy 2009).
Sowing at the right times after identifying high-yielding cultivars can result in higher
yields (Ahmad et al. 2021). Variable planting schedules resulted in considerable
changes in mungbean seed production, according to the authors (Ahmad et al. 2015).
Improving agronomic management systems and cultivation techniques may further
prove promising in mechanized management and increasing yield potential
(Chauhan and Williams 2018).
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10.2.5.1 Drought Stress and Mungbean
Water stress is mainly caused by uneven rainfall, ground water shortage, or high soil
salinity, and this situation becomes severe in many parts of the world including all
arid and semiarid regions (Fathi and Tari 2016). The effects of drought range from
morphological to molecular levels and influence all phenological stages of plant
growth (Farooq et al. 2009). Drought stress is characterized by the cessation of
various physiological processes like growth, development, and cell metabolism,
eventually affecting the economic yield and productivity of crops (Yuriko et al.
2014). The first notable symptom of water scarcity is impaired seedling germination
and poor stand establishment as reported in pea (Okcu et al. 2005). The main
consequences of drought are wilting of leaves due to loss of turgor pressure,
exhilarated solute concentrations in the cytosol, consequently inhibiting growth
and reproductive functions (Ranawake et al. 2011). In fact, under severe water
scarcity, ion uptake and transport get impaired along with a decrease in leaf area,
cell wall lignifications, and increased root shoot ratio of grain (Farooq et al. 2009).
Drought stress also triggers a decrease in leaf water potential, which acts as an
important hydraulic signal for stomatal closure to prevent further loss via transpira-
tion (Chai et al. 2016). Some other consequences of limited water supply are early
switching to reproductive stage, reduction in fresh and dry matter production, due to
diminished photosynthetic efficiency (Sheoran and Saini 1996). Water stress during
the reproduction and grain-filling stage is more detrimental and usually results in a
significant loss in grain yield. Pre-anthesis drought also leads to pollen sterility and
hampers flowering and seed filling in plants (Jaleel et al. 2009). It also results in
decreased intake of carbon dioxide, which reduces carboxylation and directs more
electrons to form ROS (reactive oxygen species) which in turn damages the photo-
synthetic apparatus and promotes photoinhibition (Farooq et al. 2009). The major
symptom of the degradation of the photosynthetic machinery in plants is the
development of chlorosis.

Plants often confront adverse drought conditions, which significantly depend on
plant genetics as well as the duration and severity of drought. In response to water
deficit in plants, stomatal closure occurs often triggered by phytohormones ABA to
avoid further loss via transpiration, which regulates the cell metabolism by inducing
expression of various stress-related genes (Fathi and Tari 2016). Acclimation of
plants to drought stress is an interrelated cross-talk between molecular and physio-
logical events, including changes in plant growth structure, accumulation of various
organic and inorganic osmolytes, improved antioxidant defense activity, and
reduced transpiration (Anjum et al. 2011). Due to the exaggerated vulnerability of
plants to drought stress in a scenario of climate change, it is crucial to understand the
morphological and physiological adaptations of plants to cope with these adverse
situations (Farooq et al. 2011).

In developing nations, grain legumes constitute a major source of dietary protein
as a means to provide food security and nutrition. Among grain legumes, mungbean
is an important pulse crop having a short life span and is more sensitive to drought
stress mainly at the reproductive stage (flower initiation and pod set), leading to
reduced productivity and yield.
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10.2.5.2 Morpho-Physiological Traits for Drought Tolerance
in Mungbean

Plants exhibit continuous growth throughout their lives that are accomplished
through processes like cell division, cell enlargement, and cell differentiation
(Farooq et al. 2009). The establishment of these processes mainly depends upon
the turgor pressure of cell and underwater stress, they are reduced to a larger extent
affecting the overall growth of plant (Taiz and Zeiger 1991). Deficit water supply
poses negative effects at any growth and development stage of the plant. Water stress
during early stages reduces germination and stand establishment due to lesser water
uptake and reduced water potential during the imbibition phase of germination,
impaired enzyme activity, and reduced energy supply (Farooq et al. 2011). Drought
critically affects the growth and development of plants with a considerable reduction
in biomass accumulation and crop growth rate. Plant growth under drought stress
can be restricted at various levels, most studied are seed germination, plant height,
leaf area, and crop growth (Ranawake et al. 2011; Aslam et al. 2013a, b; Saima et al.
2018). Reduction in growth parameters under drought stress was reported in many
crops like chickpea (Talebi et al. 2013); sunflower (Kiani et al. 2007); and barley
(McMaster and Wilhelm 2003). Various effects of drought on growth traits of
mungbean crops are discussed below.

10.2.6 Seed Germination

Saima et al. (2018) reported effects of drought stress that include reduction in seed
germination and shoot length in 10 days old seedlings in all the seven hybrids of
Vigna radiata along with increasing PEG-induced drought stress (5% and 10%),
whereas root growth increased with increasing drought stress.

Early growth stages of 17 mungbean genotypes were evaluated for drought
tolerance at the seedling stage by Aslam et al. (2013a, b). Germination percentage,
root/shoot length, root/shoot ratio, shoot weight, and stem diameter were studied at
different moisture levels (80%, 50%, and 30% field capacity). They reported that all
the reported traits decrease with an increase in drought stress except root/shoot ratio.

10.2.6.1 Plant Height and Biomass
Other growth traits like plant height and shoot weight were measured in the three
mungbean varieties (Kamway-1, VC-2010, and King) by Ahmad et al. (2015).
Experiments were divided into four sets of irrigation, that is, I1, I2, I3, and I4 that
irrigated at third, fifth, seventh, and ninth day, respectively, and by controlling the
amount of water in each set. Plant height and shoot weight varied among the
genotypes and also with the irrigation set. These traits were declined along with
increasing drought stress, which clearly represents the effects of drought on the
growth of mungbean genotypes. Ranawake et al. (2011) reported the response of
mungbean genotypes for drought stress by imposing stress at three different stages
(3WAP, 6WAP, and 8 WAP). Growth traits like average plant height, average
number of leaves, average dry matter weight of root/shoot, average number of lateral
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roots, and average length of taproot were studied on the Harsha mungbean variety.
They noted that drought stress imposed at 3 weeks after planting (Vegetative stage)
and 6 WAP (reproductive stage) caused more damage to growth and crop yield than
8WAP (Podding stage). Therefore, it is recommended that mungbean be planted in
such a way that drought stress ought not to coincide with 6WAP (reproductive
stage).

Studies by Uddin et al. (2013) revealed similar findings that drought stress
hampers the mungbean growth rate significantly. Morphological attributes including
plant height, leaf area, shoot dry weight showed the lowest performance when no
irrigation was applied to the crop compared to control. All above-mentioned studies
imply that drought stress has retarding effect on the crop phenology involving traits
like plant height, number of leaves, leaf area, and dry weight of shoots that are
directly linked with low yield.

10.2.6.2 Chlorophyll Content
Drought stress environment hampers the process of photosynthesis by decreasing the
concentration of various photosynthetic pigments. Degradation of pigment might be
due to swelling of chloroplast membrane, distortion of lamellae, and vesiculization
of lamellae (Baroowa and Gogoi 2012). Studies by Batra et al. (2014) recorded
drought-induced damage by withholding water for 4 days on the chlorophyll content
of three varieties of mungbean; RMG 268, K-851, and Anand. Gradual decline in
total chlorophyll content up to 57% in Anand, 54% in K-851, and 39% in Anand
when compared to control. These deformities further curtail the capturing of photons
to the PSII by damaging D1 core protein and reducing the electron transfer. Uprety
and Bhatia 1989, also reported comparable results in the three mungbean varieties;
PS16, P105, Pusa Baisakhi having reduced total chlorophyll content. Higher reduc-
tion pattern recorded in Pusa Baisakhi and minimum in P105 reported during the
flowering stage. Baroowa and Gogoi 2013 noted a positive correlation between soil
moisture, total chlorophyll, and chlorophyll index. The rate of decline in chlorophyll
content was rapid during prolonged drought stress (withholding water for 20 days).

10.2.6.3 Photosynthetic Rate (Pn)
Moderate and severe drought decreases photosynthesis rate by 25% and 50%,
respectively, reported in the mungbean genotypes by Moradi et al. (2008). This
reduction was accompanied by a decrease in stomatal conductance since the stomatal
closure limits CO2 availability to the mesophyll of leaves. Furthermore, they
reported that drought stress imposes severe effects on the reproductive stage
indicating 37% lower photosynthetic rate when compared to vegetative stage.
More studies on the photosynthetic rate in mungbean genotypes demonstrate that
Pn varied significantly at vegetative, pod setting, and pod filling stages. Photosyn-
thetic rate increases with the advancement of crop stage under control but signifi-
cantly decline on the application of drought treatment in all the mungbean varieties
(Naresh et al. 2013). Hamid et al. assess the impacts of water stress imposed at
different growth stages; pre-flowering, flowering, and pod development. Water
deficits have more prominent effects in terms of photosynthesis rate, leaf area, leaf
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growth, dry matter accumulation during the flowering phase compared to podding
stage. A reduction in yield by 6% has been reported in water-stressed plants
compared to well-watered plants. Yield loss is mainly caused by inhibition of
photosynthetic rate as well as lower dry matter accumulation.

10.2.6.4 Stomatal Conductance
Drought stress negatively affects photosynthesis as well as gas exchange traits that
target the assimilation capacity of plants. Loss over stomatal regulation during
water-deficit conditions may be responsible for a decline in assimilation capacity
reported in mungbean crop (Moradi et al. 2008). The effects of severity of drought
stress on different growth stages (vegetative and reproductive) of mungbean were
recorded by Moradi et al. (2008). Water deficit during the vegetative and reproduc-
tive growth stage reduces stomatal conductance and transpiration rate. But
the greatest effects of severe drought stress on these traits were recorded during
the reproductive stage. Zarifinia et al. (2012) recorded similar observations on the
mungbean genotypes that drought stress significantly reduces the stomatal conduc-
tance. Their study provided two drought-tolerant genotypes; Partow and Indian heap
based on physiological traits involving stomatal conductance.

10.2.6.5 Chlorophyll Fluorescence
Chlorophyll fluorescence is the measurement of photosystem II activity and to
understand the photosynthetic mechanisms. It further provides an indicator that
how plants respond under environmental fluctuations. This technique gained major
attention due to its use for the selection of desirable plant traits related to genetic and
physiological responses for crop improvement. Responses of mungbean genotypes
under drought stress were also recorded using this trait are discussed below.

Response of mungbean plants recorded at vegetative (S2) and reproductive stage
(S3) for drought stress by Allahmoradi et al. (2011). Their results showed that
drought stress reduces vegetative growth significantly as compared to the reproduc-
tive stage. A study of chlorophyll fluorescence showed a significant difference
between S2 with S3 and S1 (Control). Furthermore, PS II activity in S1 and S3 fall
in a normal range but in S2 it was out of the normal range (Allahmoradi et al. 2011).
Batra et al. 2014 study the effects of drought stress on different mungbean varieties
(RMG 268, K-851, and Anand) by analyzing their chlorophyll fluorescence. Their
results indicated that drought stress hinders PS II activity and energy transfer by
altering D1 protein of thylakoid protein. Variety RMG 268 and K-851 were more
tolerant to drought stress than Anand variety judged by PS II activity.

10.2.7 Relative Water Content (RWC)

It is an important measure of the physiological water status of plants indicating leaf
hydration and leaf water deficit. Maintaining water potential is important for the
plant cell because it has a crucial role in maintaining all vital cellular activities. Thus
an understanding of the effects of drought on leaf water relations is imperative for
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classifying the mechanism of drought tolerance of a plant. Therefore, it is a reliable
trait for assessing the drought tolerance of plants (Chowdhury et al. 2017). Various
studies conducted on mungbean are discussed below.

Effects of water deficit were examined in three mungbean varieties (PS 16, P105,
and Pusa Baisakhi) by withholding irrigation at pre-flowering, flowering, post-
flowering, and pod development stage (25, 35, 45, and 55 days after sowing,
respectively). Relative water content was declined in all the three mungbean
genotypes however the depression was less in variety P105 at pre-flowering,
flowering, post-flowering stage. In contrast variety, Pusa Baisakhi exhibit maximum
reduction at these stages, clearly pointing to their susceptibility toward drought stress
(Uprety and Bhatia 1989).

Field studies of Bangar et al. (2019) also showed that RWC of mungbean leaves
was significantly affected by drought. They screened total 25 varieties of mungbean
and selected few drought-tolerant varieties (Vigna sublobata, MCV-1, PLM-32,
LGG-407, LGG-450, TM-96-2, and Sattya) based on RWC along with other physi-
ological traits. Drought stress significantly affects the RWC in the vegetative stage
compared to the reproductive stage further decreasing pattern was more prominent in
the sensitive genotypes. The lowest percentage decrease (1.5–1.82%) was recorded
in tolerant genotypes (V. sublobata and MCV-1) and the highest percentage decrease
(16.6–19.52%) noted in sensitive genotypes (PDM 139 and TARM-1).

Similarly, studies by Nazran et al. (2019) on the mungbean varieties indicate that
severity of drought stress decreases leaf water content. Genotypic differences in
mungbean demonstrate that BARI Mung-6 genotype maintains the maximum RWC
(66.14%) while BUmug 2 genotype had the minimum RWC (55.21%).

10.2.7.1 Leaf Water Potential
Leaf water potential (LWP) and osmotic adjustment (OA) are the important traits
that can be used as selection criteria for improving drought tolerance. Maintaining
leaf water potential under water-deficit conditions is important for cellular activities.
It is further associated with dehydration avoidance mechanisms that how plant cells
manage to assess water through adjusting the osmolyte concentrations (Jongdee
et al. 2002). Comparison of LWP in the mungbean varieties needs to be crucial for
screening drought tolerance.

LWP of mungbean varieties was negatively affected by drought stress treatment
reported in the studies of Nazran et al. (2019). Their studies showed that the highest
water potential was reported in well-watered plants ("0.67 to "0.55 MPa) and it
gradually decreases with the severity of drought stress ("1.64 to "1.13 MPa at
50–60% field capacity). Moreover, BARI Mung-6 variety of mungbean maintains
higher water potential even at low field capacity (50–60%) and is categorized as
drought stress-tolerant in terms of physiological adaptations.

In another study on mungbean, water stress significantly reduces the LWP
throughout the growing period and majorly during flowering and post-flowering
stages (Uprety and Bhatia 1989).
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10.2.8 Biochemical Traits for Drought Tolerance in Mungbean

10.2.8.1 Oxidative Stress and Anti-oxidants
Under normal growth conditions, most of the cellular components of the plant
exhibit constant homeostasis. But the exposure to drought stress imbalanced this
homeostasis by reducing antioxidant production as a result of which greater produc-
tion of ROS is obvious. The imbalance between ROS generation and their detoxifi-
cation disrupts the redox control thus damaging the major biomolecules like
carbohydrates, lipids, proteins, nucleic acids, and enzymatic activities
(Hasanuzzaman et al. 2012). Water-deficit conditions make the protoplasm more
viscous, denature proteins, and halting the activities of Calvin cycle enzymes.
Inactivation of Calvin cycle enzymes resulted in shifting toward photorespiration,
the main cycle for ROS production. Damage to PS II and lipid peroxidation are other
reasons for ROS production. Oxidative stress was measured in terms of production
of MDA accumulation, increased H2O2. To endure oxidative stress damage, plants
attain well-organized enzymatic and nonenzymatic systems. Enzymatic antioxidants
in plants are superoxide dismutase (SOD), catalase (CAT), glutathione reductase
(GR), ascorbate reductase (APX), and glutathione peroxidase (GPX). Among
non-enzymatic anti-oxidants glutathione (GSH), ascorbic acid (ASA), tocopherol,
alkaloids, and phenolic compounds are well recognized in plants. Improvement in
antioxidant activities is effective in providing tolerance to plants against drought
stress. It has been reported through various studies that higher levels of antioxidants
help in reducing ROS-induced damage, thus improving drought tolerance.

Sengupta et al. (2013) studied the drought-induced ROS damage and significant
production of antioxidants in the mungbean roots. Drought stress exposure
(by withholding water for three (D3) and 6 days (D6) at the vegetative stage;
30 days old plant) lead to the gradual increment in H2O2and MDA content.
Non-enzymatic antioxidant GSH and ASA also showed progressive increase under
drought stress treatment. Their content increased slightly in the D3 but significantly
higher content (twofold) recorded on D6. Hence, root responses toward drought
stress are crucial to understanding that further provide some interdependence
mechanisms with photosynthetic performance and plant water status. Yin et al.
(2015) recorded the responses of mungbean genotypes to polyethylene glycol-
induced drought stress. Three concentrations of PEG 6000 were used as 5%, 10%,
and 20% to impose drought stress at the flowering period. Drought stress caused a
significant increase in the levels of O2

" and MDAwith decreasing water potential. In
contrast, activities of enzymatic antioxidants such as SOD and POX increased in all
the drought stress treatments. Drought stress hampered photosynthetic function and
enhanced the oxidative stress measured in terms of lipid peroxidation and H2O2.

Drought stress-induced oxidative stress reduces the pools of GSH and ASA. Main-
tenance of content of non-enzymatic antioxidants increases the resistance of
mungbean genotypes as reported in the studies of Anjum et al. (2015).
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10.2.8.2 Osmotic Adjustment
To survive under water deficit conditions, one common approach endorsed by plants
is the accumulation of osmolytes or compatible solutes. Osmolytes are low molecu-
lar weight, small organic compounds synthesized by plants in the cytosol, chloro-
plast, and other cellular organelles having a role in the protection of cellular
components against dehydration (Hasanuzzaman et al. 2019). Osmolytes mainly
include proline, glycine betaine, polyamines, and sugar alcohols (Ashraf and Foolad
2007). They not only help in maintaining cell turgor but are also involved in
improving ROS scavenging mechanisms, therefore buffering the cellular redox
potential (Anjum et al. 2017). Therefore, it is a protective mechanism involving
the accumulation of compatible osmolytes in plants to prevent cellular dehydration
which maintains cell water status by cell integrity, leaf water adjustment, and
osmotic adjustment (Blum 2005). Osmotic adjustment is a means by which plants
adapt to water stress by the active accumulation of solutes in the cell sap and as a
result of solute accumulation, the osmotic potential of the cell decreases, therefore
helping in withdrawing more water from surrounding and maintaining turgor of cell
(Ludlow and Muchow 1990). Due to this osmotic adjustment, all cytoplasmic
activities occur normally and, in this way, help plants to perform better in terms of
growth, photosynthesis, and assimilate partitioning (Subbarao et al. 2000). Among
all protective osmolytes, free proline is an important beneficial solute allowing plants
to increase cellular osmolarity during drought (Ashraf and Foolad 2007).

Studies by Bangar et al. (2019), reported the proline content in 25 mungbean
varieties at two development stages; vegetative and reproductive stage. Proline
content significantly increases in both developmental stages. The percentage
increase ranged from 6.5% to 80.2% during the vegetative stage and 9.6–118.3%
during the reproductive stage over the control. Further, significant variations in the
proline content were recorded in all 25 varieties. Similar findings were recorded from
the studies of Bhardwaj et al. (2018) that drought stress significantly increases the
proline content in all the seven mungbean genotypes. However genotypes
‘IPM99–125’ accumulate highest (62%) while the lowest content was recorded in
genotype “Pratap” (42%) under both the development stages. Higher proline accu-
mulation maintains to provide maximum cell osmoprotection, thus sustaining the
vital cellular activities under water deficit conditions.

10.2.8.3 Yield Traits for Drought Tolerance in Mungbean
Abovementioned effects of water scarcity are reduced plant growth and biomass
accumulation altered photosynthetic efficiency, low stomatal conductance, and
weaker source-sink activities. Poor performances of all these traits merged to induce
severe yield losses. The magnitude of reduction in grain yield depends on the
intensity and duration of stress. Drought impedes productivity at all the growth
stages but its occurrence during reproduction and grain development stages are more
crucial and results in significant yield fall (Farooq et al. 2017). Drought-induced
yield losses were reported in cereal crops like wheat by 34% (Saeidi and Abdoli
2015); maize by 59–90% (Kamara et al. 2003); and leguminous crops like Chickpea
by 45–69% (Nayyar et al. 2006), cowpea by 34–66% (Ahmed and Suliman 2010);
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lentil by 24% (Allahmoradi et al. 2013) and soybean by 42% (Maleki et al. 2013).
Effects of drought stress on the yield of mungbean crop were discussed in detail in
this review.

Ranawake et al. (2011) evaluated the effects of drought stress imposed at different
growth stages (3WAP, 6WAP, 8WAP) on yield traits like average number of pods
and average grain weight. Water stress affects the grain yield at 6 WAP (flowering
stage) more severely because plants were failed to initiate reproductive processes
resulting in no net yield. While drought stress imposed at 8WAP (podding stage)
cause comparatively less damage indicating that crop should be planted in such a
way that the reproductive phase should not coincide with drought stress. Ahmad
et al. (2015) also reported that drought stress affects the yield of mungbean
genotypes. The reduction pattern varies with the irrigation interval (3, 5, 7, and 9)
and amount of irrigation. Seed yield (kg/h) declined in all the treatments, but more
reduction was observed under irrigation interval of 9 days with the lowest number
and amount of irrigation. Seed yield declined from 1146 to 78 kg/ha in this treatment
clearly demonstrating that water deficiency hampered the yield components. Kumar
and Sharma (2009) recorded the genotypic differences in mungbean and noted that
drought stress affects the seed yield by affecting dry matter partitioning. Tolerant
mungbean genotypes exhibit high yield and it is correlated with higher RWC which
promotes more dry matter partitioning.

10.2.9 Genomics of Drought Tolerance in Mungbean

A high-throughput platform for genotyping in association with sequencing
technologies allowed the access of genetic linkage maps and quantitative trait loci
(QTL) mapping of the traits related to drought tolerance (Jha et al. 2020). Isolation of
drought-responsive genes and detection of QTLs studies are limited in mungbean.
However the study of Liu et al. 2017 identified novel genetic elements in the
mungbean providing drought tolerance. They identified 58 QTLs in the 11 linkage
groups ((LG 1–11) using 313 markers. These QTLs were associated with plant
height, leaf area, biomass, RWC, days to first flowering, and yield traits. Sixteen
QTLs were detected for plant height associated with linkage group LG 04, LG05,
and LG08. Similarly, 8 QTLs for biomass involving LG02, LG03, LG04, LG06, and
LG08, 6 QTLs for RWC on LG04, LG08 and LG10, 12 QTLs for leaf area in LG02,
LG03, LG04, LG08, and LG11, 8 QTLs for days to flowering in LG04 and 4 QTLs
for seed yield in LG01, LG04, and LG08. Few studies reported on Genome-wide
association identification of transcription factors in the mungbean genotypes to gain
more insights into the molecular mechanisms governing drought tolerance. Labbo
et al. (2018) identified 71 AP2/ERF (APETALA 2/Ethylene-responsive element
factor binding protein) transcription factors and classified them into AP2 (16),
ERF (22), RAV (2), DREB (30). Among them, DREB genes played a critical role
in drought tolerance. Five DREB genes (VrDREB 5, VrDREB12, VrDREB13,
VrDREB22, VrDREB30) exhibit higher expression under drought stress and might
be considered excellent candidates for improving drought tolerance in mungbean
genotypes. Genome-wide analyses of genes related to sucrose nonfermenting-1-
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related protein kinase 2 family (SnRK2) were characterized in mungbean that is
known to play important role in osmotic stress. 8 SnRK2 genes were reported named
as VrSnRK2.1, VrSnRK2.2a, VrSnRK 2.2b, VrSnRK 2.2c, VrSnRK 2.3, VrSnRK 2.4,
VrSnRK 2.5, VrSnRK 2.6a, VrSnRK 2.6b, VrSnRK 2.6c, VrSnRK2.7 andVrSnRK2.8.
Expression of these genes induced by drought stress indicates its importance in
drought tolerance. Moreover gene VrSnRK 2.6c exhibit higher expressions among
all the genes illustrating its critical role under drought stress tolerance (Fatima et al.
2020).

10.2.9.1 Agronomic Approaches to Combat Drought Stress
Various approaches have been developed from time to time to achieve stress
tolerance in plants. Nowadays, seed priming methods are extensively used as an
emerging technology to raise stress-tolerant plants. Seed priming evokes physiolog-
ical, biochemical, and cellular processes in the plant that prepares them to respond to
stress conditions instantly (Lal et al. 2018). It has been reported through various
studies that seed priming improves the seedling emergence, seed establishment,
growth traits, and yield traits under drought stress in wheat (Hussain et al. 2018);
maize (Nada and Hamza 2019); chickpea (Shariatmadari et al. 2017); and sorghum
(Sheykhbaglou et al. 2014). Through these studies, it is clear that seed priming
improves the drought tolerance in the plant through enhanced antioxidant activities,
accumulation of osmolytes, and better nutrient uptake. Case study on seed priming in
mungbean to exclude drought stress effects discussed in this review.

Studies by Jisha and Puthur (2016) recorded that seed priming of β-amino butyric
acid (BABA) (0.5, 1, 1.5, 2, 2.5 mM) in mungbean genotypes (Pusa Ratna, Pusa
9531, Pusa Vishal) alleviate the drought stress effects. Primed seeds exhibit higher
chlorophyll fluorescence, mitochondria activity, photosynthetic activity, and seed-
ling growth parameters (shoot length, shoot fresh and dry weight). Moreover, primed
seeds have reduced MDA content, increased accumulation of proline content, total
carbohydrate, total proline, nitrate reductase activity, and activity of antioxidant
enzymes like SOD and guaiacol peroxidase. Similarly, seed priming with
polyamines (put+spd + spm) improves the drought tolerance in mungbean genotypes
by decreasing the membrane damage, increasing the proline content, soluble
proteins, and soluble sugars. Hence, treated mungbean genotypes resulted in
improved growth and yield under drought stress (Sadeghipour 2019).

Besides conventional plant breeding and transgenic approaches, the application
of plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhiza
(AM) proved to be useful for improving drought tolerance in mungbean crops
(Sarma and Saikia 2014; Habibzadeh et al. 2014). PRPR is a group of bacteria that
are found in the rhizosphere mainly at root surfaces and in association with roots that
promote the establishment of various interactions that benefit the plant growth
directly or indirectly. They are widely studied because of their potential use as
bio-fertilizer (Kumari and Chakraborty 2017). In a similar way mycorrhiza is a
symbiotic association between fungus and plant that forms a beneficial relationship
between soil and plant that increases the water absorption as well as nutrient uptake
through mycorrhizal hypha (Habibzadeh et al. 2014). Studies have confirmed that
inoculation of various plant species with such micro-organisms leads to the
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improvement of root system architecture that enhances the ability of the plant with
better adaptation to stress condition (Sarma and Saikia 2014).

Elevated production of ROS scavenging enzymes, cellular osmolytes, and
upregulation of genes associated with drought tolerance like Dehydration Respon-
sive Element Binding protein (DREB2A) catalase (CAT1) and dehydrin, were
reported in the mungbean plants when inoculated with arbuscular mycorrhizal
fungi (Glomus mosseae, G. intraradices) (Habibzadeh et al. 2014). In another
study, mungbean genotype; AU-M4 (overproducing mutant of PGPR) has signifi-
cant drought tolerance. This mutant has enhanced ACC deaminase activity, IAA
production, and inorganic phosphate solubilization compared to the wild strains.
Therefore, express superior tolerance under drought stress in terms of higher plant
biomass, proline accumulation, water content, and lower osmotic stress injury.
Inoculation with osmoprotectant rhizobacteria isolates (A124-K and Ver5-K) pro-
duced glycine betaine that improved mungbean tolerance to drought stress (Maryani
et al. 2018). Hence, to lessen the effects of drought stress, the use of PGPR and AM
will be employed to ensure sufficient growth and yield of crop plants (Kumari et al.
2016).

10.3 Conclusion

To meet future food demands, plant stress tolerance must be improved. Plants
express a wide range of responses to heat and drought stresses which are mostly
represented by a variety of modifications in the overall growth of plant (Zhou et al.
2017). These stresses significantly affect morphological, physiological biochemical,
and molecular processes resulting in major yield losses (Sehgal et al. 2018). Almost
every plant process is affected by these stresses, from membrane stability, enzymatic
activity, at a cellular level and decreased transpiration, stomatal conductance, and
photosynthetic rate at the physiological level (Hussain et al. 2019). To minimize the
damages plants have evolved various adaptive mechanisms and activated various
signaling pathways for upregulation of antioxidants and accumulation of compatible
solutes (Fahad et al. 2017). Aforementioned traits have successfully identified heat
tolerance in mungbean crops which may provide useful information to the plant
breeders. Various new technologies have been developed for assessing physiologi-
cal, biochemical, and molecular traits for getting insight into the mechanisms
governing heat tolerance (Chen et al. 2019). However commercial applications of
these techniques are limited and require further field trials. Advances in Omics
technique including genomics, transcriptomics, proteomics, and metabolomics
could provide possible candidate genes, proteins, and metabolites contributing to
stress tolerance (Zhou et al. 2017). Molecular breeding methods like QTLs and
GWAS could also reveal the stress tolerance governing genes (Priya et al. 2019a, b).
Therefore, concerted efforts are needed to enhance the efficiency of breeding
programs for the rapid development of varieties with improved adaptation to heat,
drought, and combined stresses and other desired traits (Fig. 10.1).
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The rising temperatures are seriously impacting the food crops, including

urdbean; hence efforts are needed to identify the sources of heat tolerance

in such crops to ensure global food security. In the present study, urdbean

genotypes were evaluated for heat tolerance under natural outdoor for two

consecutive years (2018, 2019) and subsequently in the controlled

environment of the growth chamber to identify high temperature tolerant

lines. The genotypes were assessed involving few physiological traits

(membrane damage, chlorophyll, photosynthetic efficiency, stomatal

conductance, lipid peroxidation), reproductive traits (pollen germination %

and pollen viability %) and yield related traits (total number of pods plant-1,

total seeds plant-1, single seed weight and seed yield plant-1). Based upon these

tested traits, PantU31, Mash114, UTTARA and IPU18-04 genotypes were

identified as promising genotypes for both years under heat stress condition.

Further confirming heat tolerance, all these four tolerant and four sensitive

genotypes were tested under controlled environment under growth chamber

condition. All these four genotypes PantU31, Mash114, UTTARA and IPU18-04

showed high chlorophyll content, photosynthetic efficiency, stomatal

conductance, leaf area, pods plant-1, total seeds plant-1 and low reduction in

pollen germination % and pollen viability under stress heat stress condition.

Moreover, yield and yield related traits viz., pods plant-1, seeds plant-1, single

seed weight and seed yield plant-1 showed very strong positive correlation with
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pollen germination and pollen viability except electrolyte leakage and

malondialdehyde content. Thus, these genotypes could be potentially used

as donors for transferring heat tolerance trait to the elite yet heat-sensitive

urdbean cultivars.

KEYWORDS

urdbean, heat stress, genetic variability, physiological traits, biochemical traits

1 Introduction

Due to global climate change projections, heat waves are

predicted to expand in many regions of the world imposing a

huge threat to the agricultural security (Riaz et al., 2021).

Variability around the optimum temperature is going to surge

that will affect the complete life cycle or phenology of the plant

(Chaturvedi et al., 2021). Continuously rising temperature (heat

stress) has wide range of impacts on the overall morphology,

anatomy and physiology of the plants (Chen et al., 2014). At sub-

cellular levels, these impacts can be assessed using various

biochemical and molecular approaches. Although heat stress

has the potential to affect all the stages of plant but some stages

are more vulnerable to heat stress; reproductive or seed filling

stages are highly affected due to heat stress (Allakhverdiev et al.,

2008; Hedhly, 2011). Moreover, the effects of high temperature

are plant species- and stage- specific, the severity further

depends on the duration and intensity of stress (Li et al.,

2018).Various reports have suggested that heat stress disturbs

the morphology of the plant by reducing its plant height, leaf

area and root architecture (Chaudhary et al., 2020). At the

cellular level, heat stress leads to protein denaturation, enzyme

inactivation, membrane damage, exaggerate ROS generation,

loss in water status and cellular viability. In leaves,

photosynthetic machinery is reported as most sensitive to high

temperature (Wahid et al., 2007; Bita and Gerats, 2013). Loss of

chlorophyll content, denaturation of D1 protein of photosystem

II and reduced carbon metabolism are mainly responsible for

reducing photosynthetic rate (Allakhverdiev et al., 2008).Of the

reproductive organ development stages; male gametophyte

development and seed filling processes are reported to be

extremely sensitive to even a few degree rise in temperature

that can result in substantial yield loss (Hedhly, 2011). Impaired

transport of sucrose to the developing reproductive organs

under heat stress may restrict the flower development that

brings out more flower abortion, pod abortion and shrivelled

seeds (Bhandari et al., 2016). Plant responds to such damages by

reprogramming and activating various mechanisms related to

production of antioxidants, phytohormones, osmolytes, primary

and secondary metabolites to ensure their survival (Chebrolu

et al., 2016; Sharma et al., 2016; Jha et al., 2022). Therefore,

correlation of crop phenology with temperature fluctuations is

crucial for the better understanding of the impacts and defence

strategies employed by plants for its adaptation.

Urdbean (Vigna mungo L. Hepper) is an important summer

season food legume, cultivated mostly in many tropical and sub-

tropical countries of Asia, Africa, America, and Australia (Joshi

and Rao, 2017).Optimum temperature for its proper growth and

development is 25-35°C and being a temperature sensitive crop,

its yield is drastically reduced under high temperature exceeding

35°C (Anitha et al., 2016; Sen Gupta et al., 2021).Very little

reports are available about the heat stress impacts as well as

defence responses, especially at reproductive stage of this crop

(Sen Gupta et al., 2021). It is vital to identify and characterise

heat tolerant urdbean genotypes as well as to find out some leaf

and pollen-based traits and mechanisms underlying heat

tolerance. Heat tolerant urdbean genotypes can increase the

cultivation of this food legume in summer season as well at

warmer locations to extend its cultivation status. Thus, the aim

of the present study was to screen selective number of genotypes

of urdbean to heat stress in 2 successive years under outdoor

environment to identify heat tolerant genotypes, followed by

their validation and characterisation under controlled

environment of the growth chamber involving some leaf and

pollen-based traits.

2 Methodology

2.1 Field and growth
chamber experiments

Urdbean genotypes (26) were procured from Indian

Institute of Pulse Research, Kanpur, India and Punjab

Agricultural University, Ludhiana, India (Supplementary Table

S1). These genotypes were assessed for their heat tolerance under

outdoor environment and controlled conditions of the growth

chamber at the Department of Botany, Panjab University,

Chandigarh, India. Urdbean seeds were raised in pots (8L

capacity) containing a mixture of soil, sand, farmyard manure
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[2:1:1 (v/v)] and Tri-calcium phosphate fertilizer 10 mg kg-1.

Seeds were soaked in distilled water overnight (12 h) and

subsequently inoculated with suitable strain of Rhizobia before

sowing. There were 5 pots genotype-1 and each pot had 5 seeds

that were thinned to 3 plants pot-1 after emergence for their

proper growth. Plants were fully irrigated daily (twice; morning

and evening) to avoid any water paucity. Plants were arranged in

a randomized complete block design. Meteorological data (daily

temperature and relative humidity) from date of sowing to

harvesting was recorded throughout the entire cropping

season (Supplementary Figure S1). To evaluate the effects of

heat stress against the control temperature, crop was sown twice

during cropping season and for two subsequent years (Summers

of 2018, 2019) (i) during the normal conditions (control), in the

last week of March 2018, when the day/night temperatures (<35/

25°C) were optimum for the plant’s growth and ii) in the last

week of April, to expose the plants to heat stress (>40/30°C).

(Supplementary Figure S1, Supplementary Table S2). The plants

after harvest were recorded for number of pods, seeds, seed yield

plant-1 and single seed weight.

For validation of the results, a subsequent study was

conducted in the growth chamber under the controlled

conditions on some selected contrasting genotypes (4 heat-

tolerant and 4 heat- sensitive genotypes, 5 pots genotype-1

having 2 plants pot-1). These plants were initially raised in the

outdoor natural environment to achieve full vegetative growth

(Average temperature<35/25°C; average RH 61/41%; Max/min)

and were subsequently transferred to growth chamber at the

onset of bud stage for further analysis. To avoid any kind of heat

shock situation, temperature was gradually raised (2°C per day)

up to 42/32°C. The plants were maintained at this temperature

up to maturity. Simultaneously, the control plants were

maintained at 35/25°C.

After 10d of heat stress, fully expanded leaves at 2nd and 3rd

positions from the topmost youngest leaf were from control and

heat-stressed environments were evaluated for various

physiological traits viz. SPAD chlorophyll content, chlorophyll

fluorescence (Fv/Fm), electrolyte leakage (to assess membrane

damage), stomatal conductance, leaf area, relative leaf water

content, and malondialdehyde (MDA). The reproductive traits

(pollen viability and pollen germination) were tested from flowers

after 5d exposure to heat stress. All these traits were further

correlated with yield traits like total number of pods plant-1, total

number of seeds plant-1, total seed yield plant-1, single seed weight.

2.2 Physiological, reproductive and
yield traits

To assess the effects of heat stress on the plant growth and

yield, various traits were studied; data were taken from three

plants in triplicates genotype-1, pooled and averaged. Mean

values of replicates are presented through tables and figures.

2.3 Physiological traits

2.3.1 Chlorophyll content
Chlorophyll content (SPAD value) was measured using

Apogee-SPAD meter and its readings were taken between

10.00 and 11.00 h of a fully expanded tagged leaf on

alternative days at full vegetative and reproductive stage from

30 DAS (days after sowing) (Devi et al., 2022).

2.3.2 Chlorophyll fluorescence
PS II activity/stability or photosynthetic efficiency was

measured as chlorophyll fluorescence. Readings were taken

between 10.00-11.00 h of a fully expanded leaf using the dark

adapted test of modulated chlorophyll fluorometer OS1-FL (Opti-

Sciences, Tyngsboro, MA, United States) (Sharma et al., 2016).

2.3.3 Electrolyte leakage
Stress injury to leaves was measured as electrolyte leakage.

Fresh leaves (1.0 g) were collected and washed three times with

deionised water to remove surface adhering electrolytes. Plant

tissue was placed in closed vials containing 10 ml of deionised

water and incubated it for 25°C on a rotary shaker for 24 h; the

electrical conductivity of the solution (L1) was checked using a

conductivity meter (ELICO CM 180, Hyderabad, India). Then

the final conductivity (L2) was measured after heating samples in

a water bath at 120°C for 20 min (Lutts et al., 1996). Electrolyte

leakage was calculated as (L1/L2) × 100. The electrolyte leakage

was expressed as electrical conductivity in µmhos g–1 DW.

2.3.4 Stomatal conductance
Stomatal conductance was measured from a fully expanded

leaf using a portable leaf porometer (model SC1 Decagon

Devices, Pullman, WA, United States) at 11.00 h and was

expressed as m molm-2s-1 (Awasthi et al., 2014).

2.3.5 Leaf area
Area of fully expanded tagged leaves was determined using a

measurement scale and multiplied with a ‘leaf factor’ (method

derived from urdbean from the ratio of actual and measured leaf

area of many types of leaves from top to bottom of a plant)

(Sharma et al., 2016).

2.3.6 Relative leaf water content
RLWC was measured by the method of Barrs and

Weatherley (1962). Fresh leaves were collected and were

washed three times to remove any kind of debris. After drying

with blotters, they were weighed (fresh weight, FW) and then

floated in the distilled water in a petri dish. After 2 h, leaves were

taken out of petri dish, reweighed and surface dried with blotters.

Leaves were then oven-dried at 110°C for 24h and again weighed

for dry weight (DW). Final values for relative leaf water content

was calculated as (FW-DW)/(TW-DW) × 100.
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2.3.7 Malondialdehyde content
Lipid peroxidation of the cell membrane was measured as

malondialdehyde (MDA) content (Heath and Packer, 1968).

One hundred mg fresh leaf tissue was extracted in 10 mL of 0.1%

trichloroacetic acid (TCA). The homogenate was centrifuged at

15,000 rpm for 5 min. Supernatant was used as extract.

Afterward, 4 mL of 0.5% thiobarbituric acid (in 20%

trichloroacetic acid) was added to a 1-ml of the supernatant.

This mixture was heated at 95°C for 30 minutes followed by

immediate cooling in ice bath. Re-centrifugation of this mixture

was performed again at 10,000 rpm for 10 min and the

absorbance of the supernatant was taken at 532 nm. Values

were expressed as nmol g-1 DW.

2.4 Reproductive traits

For evaluating reproductive function, flowers were collected 5

days after exposure to heat stress and assessed for following traits.

2.4.1 Pollen germination
For testing pollen germination, pollen grain samples were

taken in three replicates and each replicate consisted of five

flowers genotype-1 (Brewbaker and Kwack, 1963). Pollen grains

were collected and immersed in few drops of pollen germinating

medium (10% sucrose, 990 mM potassium nitrate (pH 6.5), 1.64

mM boric acid, 812 mM magnesium sulphate and 1.3 mM

calcium nitrate) (Kaushal et al., 2013).

2.4.2 Pollen viability
Around 100 pollen grains were tested for the pollen viability

with 0.5% acetocarmine/Alexander stain per genotype in three

replicates. Selection of viable pollen grains was made on the basis

of size (fully expanded), shape (triangular or spherical) and

concentration of stain taken by them. Pollen grains were

collected from freshly opened flowers and were pooled and

checked for their viability (Kaushal et al., 2013).

2.5 Yield traits

For obtaining yield data, three plants genotype-1 in three

replications (9 plants genotype-1) were harvested at maturity,

wrapped in paper bags and dried in an oven at 65°C for at least

three days. After drying, the total number of pods and seeds,

total seed weight and single seed weight plant-1 were calculated

(Sharma et al., 2016).

2.6 Statistical analyses

Urdbean plants were grown in outdoor environment for 2

consecutive years as well as under controlled environment of the

growth chamber using RCBD. The analysis of data for

computing standard errors and least significant differences

(P<0.05) was performed using 2-factorial (temperature ×

genotypes) design using OPSTAT statistical software (CCS,

HAU, Hisar, India). Genotypic correlation, heritability were

analysed by using GenStat 15 software. The Euclidean

dissimilarity matrix was constructed involving all the

genotypes and traits, and were clustered using Ward’s method

(Patterson and Thompson, 1971). The principal component

analysis was done using the R package factoextra, and heat

map analysis was performed according to Babicki et al. (2016).

3 Results

3.1 Physiological traits

3.1.1 Electrolyte leakage
Electrolyte leakage (EL%) is one of the important

physiological traits measuring membrane damage used for

screening heat stress tolerant genotypes in plants. Heat stress

significantly (P<0.01) damaged the membranes (Supplementary

Figure S2, Supplementary Table S3). EL increased by 49 and 51%

in heat-stressed plants, compared to controls, in the first and

second years, respectively. Based on this trait, Mash 114 (18.5%,

17.73%), PantU31(21.77%, 20.8%), UTTARA (21.43%, 20.73%),

IPU18-04 (18.17%, 19.73%) genotypes revealed low value for EL

% under heat stress environment for both years. However, the

genotypes IPU 18-6 (25.13%, 26.9%), Mash 218 (26.47%, 26%),

SuG1153 (26.23%, 26.9%) exhibited high value for EL% under

heat stress environment for both years suggesting their heat

stress sensitivity. The high heritability values (82.6% and 86.85,

for first and second years, respectively) for this trait were noted

under heat stress see Table 1.

3.1.2 Stomatal conductance
Stomatal conductance (gS) varied significantly (P<0.01) across

the genotypes in plants exposed to high temperature

(Supplementary Figure S3, Supplementary Table S3). As a result

of high temperature, gS decreased by 12 and 15% over control in 1st

and 2nd year, respectively. Under heat stress environment, Mash

114 (45.6, 40.47) and Pant G 31(43.9, 46.53) genotypes showed

high value for stomatal conductance in both years. Regarding

heritability for gS, 96.5% (during the first year) and 95.2% (during

second year) heritability values were noted (Table 1).

3.1.3 Chlorophyll content
A significant genetic variation (P<0.01) was noticed in

chlorophyll content among the genotypes under heat stress

(Supplementary Figure S4, Supplementary Table S3). The

range of leaf chlorophyll content was noted to be 11.4-19.8 mg

g-1 FW during the first year and 12.3- 21.3 mg g-1 FW during
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second year under heat stress environment. An average

reduction of 22 and 30% was observed due to heat stress,

relative to controls, in 1st and 2nd year, respectively. High

value for chlorophyll content was observed in Mash 114

(19.67, 18.97), PantG31 (19.77, 20.47), UTTARA (17, 20.4)

genotypes under heat stress environment for both the years.

This trait also showed high heritability (85.5% and 92.7% for 1st

and 2nd years, respectively) and could be vital for selecting heat

tolerant urdbean lines (Table 1).

3.1.4 Chlorophyll fluorescence
Significant genetic variability for chlorophyll fluorescence

(ChlF) (Fv/Fm) was noted under heat stress environment

(P<0.01) (Supplementary Figure S5, Supplementary Table S3).

Mean value for Fv/Fm was noted to be 0.53 during the first year

and 0.54 during second year under heat stress environment.

Heat stress caused about 28% reduction over control in both the

years. The genotypes Mash 114 (0.61, 0.66), PantU31(0.61, 0.65),

UTTARA (0.6,0.65) showed high value for ChlF under heat

stress for both years. Heritability for this trait was noted to be

90.1% and 97.3% during the first year and second year,

respectively (Table 1).

3.1.5 Leaf area
Significant genetic variation (P<0.01) was noted in leaf area

(LA) among the tested genotypes under hot environment for

both years (Supplementary Figure S6, Supplementary Table S3).

LA decreased by 23 and 28% in heat-stressed plants, over

TABLE 1 General statistics of various traits in urdbean genotypes under heat stress environment.

Heritability CV% Mean Range

Heat stress 1st year

Chlorophyll content 85.5 8.1 15.1 11.4-19.8

chlorophyll fluorescence 90.1 5.3 0.53 0.41-0.61

Electrolyte leakage% 82.6 7.3 24.2 18.2-28

Leaf area 83.7 6.6 18.4 13.9-21.4

Stomatal conductance 96.5 8.1 28.9 22.3-45.6

Pods plant-1 98.5 13.8 5.72 2.4-15

Seeds plant-1 99.4 11.2 21.03 6.2-62

Seed yield plant-1 99.2 19 0.64 0.11-2.7

Single seed weight 92.2 12.1 0.03 0.02-0.04

Heat stress 2nd year

Chlorophyll content 92.7 7.6 15.7 12.3-21.3

Chlorophyll fluorescence 97.3 2.9 0.54 0.44-0.66

Electrolyte leakage% 86.8 6.7 24.4 17.3-27.7

Leaf area 89.8 6.1 17.6 14.7-20.6

Pods plant-1 99 11.3 6.16 2.8-15.9

Stomatal conductance 95.2 8.6 30 25.5-46.5

Seeds plant-1 99.6 9.4 22 5.3-71

Seed yield plant-1 99.6 15 0.73 0.16-2.03

Single seed weight 94.5 10.1 0.03 0.02-0.04

Growth chamber heat stress

Chlorophyll content 94.5 7.5 16.35 13.27-19.67

chlorophyll fluorescence 98.8 3.7 0.54 0.42-0.66

Electrolyte leakage% 96.2 4.5 24.5 20.27-28.03

Leaf area 94.5 7.5 16.35 13.27- 19.67

Malondialdehyde 98.8 5.3 27.75 19.3-33.97

Pollen germination % 99.4 6.8 36.7 15.3-54.17

Pollen viability% 98.8 6.7 43.24 24.5-61.20

Relative water content 99.3 2.9 63.66 49.57- 79.1

Stomatal conductance 99.1 5.5 25.03 14.37-33.7

Seeds plant-1 99.4 9.1 29 4-52

Seed yield plant-1 99.5 10.6 1.26 0.15- 2.38

Single seed weight 98.7 7.4 0.03 0.02-0.04

Pods plant-1 99.4 9.1 8.79 2.7-14.73
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controls, in the 1st and 2nd years, respectively. Substantial genetic

variability for this trait was noted under heat stress environment

ranging from 13.9-21.4 cm2 (during the first year) and 14.7-20.6

cm2 (during second year). High heritability (83.7%) recorded

during the first year and 89.8% during second year, suggested

that this trait could be used for screening heat tolerance in

urdbean (Table 1).

3.2 Yield and yield-related traits

Significant (P<0.01) genetic variability for pods plant-1

(Figure 1) seeds plant-1 (Figure 2), seed yield plant-1 (Figure 3)

and single seed weight (Figure 4) were recorded under heat stress

environment for both years (Supplementary Table S3).

Under high temperature, maximum pods plant-1 decreased

by 82.4 and 83.7%, maximum seeds plant-1 by 94.7 and 94.3%,

maximum seed yield plant-1 by 91.5 and 95.2% and single seed

weight by 26 and 32% over the respective controls in 1st and 2nd

year, respectively. The UTTARA genotype retained highest pod

number plant-1 (15, 16) followed by PantU31(15,15), IPU18-04

(14,16) under heat stress environment for both years. For seeds

plant-1 trait, Mash114 (63, 66), UTTARA (63, 71) and IPU18-04

(62, 63) showed promising results under heat stress environment

for both years. Likewise, Mash114 (47.7%, 41.6%), IPU18-04

(43.34%, 48.9%), UTTARA (57.39%, 38%), and PantU31

(55.45%, 28.7%) showed lower reduction percentage for seed

yield plant-1 for both years, and thus could be highly heat

tolerant genotypes. Under heat stress environment, high

heritability with 98.5%, 99.4% and 99.2% was noted for pods

plant-1, seeds plant-1 and seed yield plant-1, respectively during

the first year. Similarly, these traits showed high heritability

under hot environment during second year also (Table 1).

3.3 Validation of selected heat tolerant
and heat-sensitive Urdbean genotypes
in growth chamber

Significant genetic variability for the various evaluated traits

was recorded in twenty-six selected urdbean genotypes under

normal and heat stress condition in both years (Supplementary

Table S3). Based on the various physiological and yield and yield

related parameters, the following genotypes Mash 114, PantU31,

A

B

C

FIGURE 1

Pod number plant -1 of Urdbean genotypes under control (normal-sown; Control) and heat stress environment during 2018 (A),2019 (B) and in
controlled environment of growth chamber (GC; C). LSD values (P < 0.05); genotype × treatment: 2.6 (2018), 3.1 (2019), 3.46 (GC). Values are
means + SE. (n = 3).
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IPU18-04 and UTTARA were identified to be heat tolerant for

both years under hot environment. Contrastingly, Mash 118,

SuG1153, IPU18-5, IPU5(19-46) were identified to be highly

sensitive to heat stress for both years.

To validate the response of selected heat tolerant and sensitive

genotypes, a selected set of 4 heat tolerant and 4 heat-sensitive

urdbean genotypes among the 26 genotypes were examined under

growth chamber subjecting them to normal and heat stress

treatments, separately. Among these selected 4 heat tolerant

genotypes, Mash114 and IPU18-04 revealed high tolerance to

heat stress, evidenced by high number of pods plant-1 (14.5,14.2),

high seed number plant-1 (52.5, 46.5) and high efficiency of

various physiological traits (chlorophyll content (Supplementary

Figure S4), chlorophyll fluorescence (Supplementary Figure S5),

stomatal conductance (Supplementary Figure S6), low electrolyte

leakage (Supplementary Figure S2), and low malondialdehyde

content (Supplementary Figure S7) and reproductive traits [high

pollen germination (57.4%, 52.5%) and viability percentage

(61.2%, 57.1%)] under heat stress environment (see

Supplementary Figure S7).

However, among the heat-sensitive genotypes, IPU5-(19-46)

and IPU-18-5 showed high heat stress sensitivity, evidenced by

high reduction of yield and yield-related traits as well as

physiological and reproductive traits.

3.4 Correlation analysis

Pod number plant-1 showed significant positive correlations

with traits-chlorophyll content, chlorophyll fluorescence, leaf

area and stomatal conductance-directly contributing to

photosynthesis process whereas significant and negative

association of electrolyte leakage (EL) percentage was noticed

(Table 2). EL also showed negative correlation with traits

(chlorophyll content, chlorophyll fluorescence, leaf area and

stomatal conductance), yield traits such as pods plant-1, seeds

plant-1, single seed weight and seed yield plant-1 under heat

stress environment during both the years.

In urdbean plants grown under growth chamber condition,

subjected to heat stress, electrolyte leakage and malondialdehyde

(an indicator of oxidative stress) showed highly significant

negative correlation with all the physiological traits viz.,

chlorophyll content, chlorophyll fluorescence, stomatal

conductance, relative water content, leaf area, pollen

A

B

C

FIGURE 2

Seed number plant -1 of Urdbean genotypes under control (normal-sown; Control) and heat stress environment during 2018 (A),2019 (B) and in
controlled environment of growth chamber (C; GC). LSD values (P < 0.05); genotype × treatment:6.9 (2018), 7.5 (2019), 12.1 (GC). Values are
means + SE. (n = 3).
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germination % and pollen viability % and yield traits viz. pods

plant-1, seed yield plant-1 (Table 2).

High and significant positive correlation of pollen

germination % and pollen viability % were noticed with all

the traits except electrolyte leakage and malondialdehyde.

Likewise, stomatal conductance and RLWC also exhibited high

and positive correlation with all the traits except electrolyte

leakage and malondialdehyde. The yield and yield related

traits viz., pods plant-1, seeds plant-1, single seed weight and

seed yield plant-1 showed very strong positive correlation

with pollen germination and pollen viability (Table 2)

suggesting these traits as vital for screening heat tolerant

urdbean genotypes.

3.5 PCA analysis

During the first year, under heat stress environment, PCA

analysis (Figure 5) revealed five principal components correlated

to 9 traits accounted for 96.5% of total variability. The individual

contribution of each component was 76.8%, 6.84%, 5.18%, 4.23%

and 3.38%. Analysis of factor loadings of the traits in the retained

PCs suggested that seed yield plant-1 (SPY) (13.76), seeds plant-1

(SPP) (13.45) and pods plant-1; PPP (13.12) contributed most

positively. In PC2, leaf area (LA) contributed most positively.

The trait chlorophyll fluorescence (ChlF) (58.47), chlorophyll

(Chl) (76.45) and electrolyte leakage (EL%) (45.1) had highest

contribution to PC3, PC4 and PC5, respectively.

Likewise, during second year, PCA analysis (Figure 6)

indicated five principal components correlating to 9 traits

contributed 97.9% to the total variability. The individual

contribution of each component was 81.2%, 9.3%, 3.62%,

2.51% and 1.29%. PPP (12.6) had the highest contribution to

PC1. Likewise, LA (50.69) contributed with highest positive

value to PC2. EL% (57.38), ChlF (40.18) and Chl (53.1) had

highest positive contribution to PC3, PC4 and PC5, respectively.

Under growth chamber, PCA analysis (Figure 7) suggested

five PCAs attributing to 13 traits contributing 99.8% to the total

variability. The individual contribution of each component was

PC1 (97.5%), PC2 (1.03%), PC3 (0.64%), PC4 (0.35%) and PC5

(0.30%). Chlorophyll content (7.81) had the highest contribution

to PC1, while single seed weight (32.58) had the highest

contribution to PC2. Electrolyte leakage (30.42%) had the

highest contribution to PC3 and stomatal conductance (42.09)

had the highest contribution to PC4. Seeds plant-1 (32.98) had

the highest contribution to PC5.

A

B

C

FIGURE 3

Seed yield plant -1 of Urdbean genotypes under control (normal-sown; Control) and heat stress environment during 2018 (A),2019 (B) and in
controlled environment of growth chamber (C; GC). LSD values (P < 0.05); genotype × treatment: 1.3 (2018), 1.5 (2019), 1.3 (GC). Values are
means + SE. (n = 3).
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A

B

C

FIGURE 4

Single seed weight of Urdbean genotypes under control (normal-sown; Control) and heat stress environment during 2018 (A), 2019 (B) and in
controlled environment of growth chamber (C;GC). LSD values (P < 0.05); genotype × treatment: 0.0023 (2018), 0.0021 (2019), 0.0018 (GC).
Values are means + SE. (n = 3).

TABLE 2 Correlation coefficients of various traits with yield traits in plants under heat stress environment.

Trait Outdoor environment (2018) Outdoor environment (2019) Growth Chamber

Number of Pods
Plant-1

Seed yield
plant-1

Number of Pods
Plant-1

Seed yield
plant-1

Number of Pods
Plant-1

Seed yield
plant-1

Electrolyte leakage % -0.71** -0.76** -0.73** -0.73** -0.96** -0.98**

Chlorophyll 0.71** 0.72** 0.80** 0.73** 0.98** 0.99**

Chlorophyll
fluorescence

0.68** 0.70** 0.87** 0.82** 0.99** 0.99**

Stomatal Conductance 0.91** 0.95** 0.97** 0.95** 0.98** 0.98**

Leaf area 0.70** 0.67** 0.60** 0.54** 0.98** 0.99**

Malondialdehyde -0.98** -0.98**

Pollen viability 0.98** 0.97**

Pollen germination 0.96** 0.99**

Number of Pods
Plant-1

1 0.96** 1 0.95** 1 0.99**

Seed yield plant-1 0.96** 1 0.92** 1 0.99** 1

Seeds plant-1 0.98** 0.99** 0.98** 0.95** 0.98** 0.99**

Single seed weight 0.81** 0.88** 0.86** 0.85** 0.98** 0.97**

** denotes significant at 1%.
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3.6 Clustering and identifying heat
tolerant Urdbean genotypes based
on outdoor experiments

Based on the heat map analysis considering all the

physiological and yield-related traits evaluated during the first

year in all, the 26 genotypes revealed three major clusters.

Regarding first year, Cluster 1 contained all the highly heat

tolerant genotypes, including IPU18-04(43.34%), Mash 114

(47.7%), UTTARA (IPU94-1) (57.39%), and PantU31

(55.45%) (Figure 8) relying on low reduction of seed yield

plant-1 (SYP) compared under non-stress and heat stress

conditions. The heat-sensitive genotypes viz., Mash218

(91.35% SYP reduction), IPU5 (96.79% SYP reduction),

FIGURE 5

Principal component analysis (PCA) of various traits in Urdbean genotypes under heat stress in the year 2018.

FIGURE 6

Principal component analysis (PCA) of various traits in urdbean genotypes under heat stress in the year 2019.
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IPU18-5(93.40% SYP reduction) remained in second cluster.

The 3rd cluster had genotypes such as IPU 11-02 (88.45% SYP

reduction), SuG1170 (89.79% SYP reduction), SuG1169 (90.235

SYP reduction), Mash 1008 (92.6% SYP reduction)

Likewise, during second year, the heat map also divided the

genotypes into three clusters (Figure 9). The first cluster

contained the highly heat tolerant genotypes viz., Mash 114

(41.6% SYP reduction), PantU31 (28.7% SYP reduction), IPU18-

04 (48.35% SYP reduction) and UTTARA (38% SYP reduction).

In the second cluster, all the heat-sensitive genotypes such as

Mash 218 (91.5% SYP reduction), SuG1153 (94.1% SYP

reduction), IPU18-5 (94.8% SYP reduction) and IPU5 (95.2%

SYP reduction) were placed. Other genotypes, for example,

IPU2-43 (62.1% SYP reduction), IPU-11-02 (90.3% SYP

reduction), and SuG1169 (90.8% SYP reduction) were found

in third cluster.

The cluster analysis of the selected genotypes evaluated for

various traits under growth chamber condition resulted in two

major clusters (Figure 10). The first cluster contained all the

four heat-sensitive genotypes such as IPU18-5, IPU5, SuG1153,

and Mash 218, whereas the second cluster contained all

the heat tolerant genotypes UTTARA, PantU31, IPU18-04,

and Mash114.

Various symptoms of heat stress on urdbean at vegetative

and reproductive growth are shown in Figures 11 and 12.

4 Discussion

Increasing frequency of heat stress events poses serious

challenges in all the plant growth stages, especially,

reproductive stage, resulting in significant yield loss in various

crop plants, including urdbean (Jha et al., 2014; Jha et al., 2017;

Chaudhary et al., 2020; Chaudhary et al., 2022). Thus, assessing

urdbean’s genetic variability for phenological, morpho-

physiological, biochemical and yield and yield related traits is

one of the prime objectives for developing heat tolerant climate

resilient urdbean genotypes.

A selected set of 26 urdbean genotype were examined for heat

stress tolerance by growing them under non-stress and heat stress

under field condition and under controlled growth chamber

conditions. Wide range of genetic variability for various

physiological, biochemical and yield and yield related traits was

observed. Thus, some genotypes showing promising results based

on the physiological traits such as chlorophyll content,

chlorophyll fluorescence, and yield traits like high pod setting

plant-1 and high seed yield plant-1 under heat stress environment

were identified and validated for heat tolerance under controlled

high temperature environment. These urdbean genotypes could

be a precious resource for heat tolerance. Further, the tolerant

urdbean genotypes could be potentially used for investigating the

genetic control of heat tolerance in urdbean.

FIGURE 7

Principal component analysis (PCA) of various traits in urdbean genotypes under heat stress in a growth chamber.
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Among the various physiological traits for assessing heat

stress response at vegetative stage during photosynthesis,

measuring chlorophyll content, electrolyte leakage, stomatal

conductance and photosystem II function are essential

parameters for selecting heat tolerant genotypes (Srinivasan

et al., 1996; Sita et al., 2017; Bhandari et al., 2020; Devi et al.,

2022). Chlorophyll is the main photosynthetic pigment, assists

in capturing light energy and enables in photosynthesis process

(Wang et al., 2018). Heat stress causes reduction in Chl content

resulting in leaf senescence (Kim and Nam, 2007). Improved

retention of Chl content under heat stress could be an indication

of heat stress tolerance. Thus, genetic variability for Chl content

could be useful for selecting heat tolerant genotypes. Heat

tolerance based on membrane stability measured by

electrolyte/ion leakage is an important trait for selecting

genotypes for heat tolerance (Bajji et al., 2002). Under high

temperature stress, the genotypes showing low electrolyte

leakage indicate stable cell membrane stability and thus are

considered heat tolerant. Likewise, stomatal conductance and

transpiration cooling are important traits for assessing heat

tolerance in plants. Leaf cooling is a vital heat stress avoidance

mechanism (Deva et al., 2020) thus, enhanced stomatal

conductance and transpiration cooling could help plants to

conduct photosynthesis process under high temperature stress

(Porch and Hall, 2013). Thus, genotypes with high stomatal

conductance could be heat tolerant. In the current study,

Mash114, UTTARA, PantU31 genotypes showed high

chlorophyll content, high stomatal conductance, low

electrolyte leakage and high Fv/Fm value under heat stress,

both under field and growth chamber condition, indicating

their heat stress tolerance. Similar findings were reported in

chickpea (Devi et al., 2022), lentil (Srinivasan et al.,1996;

Delahunty et al., 2015; Sita et al., 2017; Sehgal et al., 2019;

Bhandari et al., 2020) and pea (McDonald and Paulsen, 1997)

under heat stress.

Of all the growth stages, reproductive stage is the most

sensitive stage affected by negative impact of heat stress (Zinn

et al., 2010). High temperature stress causes anomalies and

malfunction in reproductive processes ranging from reduction

in pollen germination (PGP) percentage, pollen viability

percentage (PVP), malformation in ovule to inhibition in

fertilization process in various crops, including rice (Xu et al.,

2021), wheat (Ullah et al., 2022), chickpea (Bhandari et al., 2020;

Devi et al., 2022), common bean (Silva et al., 2019; Soltani et al.,

2019) and tomato (Gonzalo et al., 2021). High PGP and PVP

values are indicators of efficient reproductive function leading to

high pod and seed setting resulting in improved yield under heat

stress (Firon et al., 2006; Pham et al., 2020). Sufficient range of

FIGURE 8

Heat map based on the response of urdbean genotypes to heat stress in the year 2018.

Chaudhary et al. 10.3389/fpls.2022.1042999

Frontiers in Plant Science frontiersin.org12

179

https://doi.org/10.3389/fpls.2022.1042999
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


genetic variability for PGP (15.4%-57.4%), PVP (24.5%-61.2%)

was noted under heat stress in the present study, providing scope

for selection and developing heat tolerant urdbean genotypes.

Based on these traits, Mash114 and PantU31 genotypes could be

promisingly used as donor parents for improving heat tolerance

in urdbean. Screening of heat tolerance relying on PGP and PVP

has been reported in rice (Zhang et al., 2018), wheat

(Bheemanahalli et al., 2019), chickpea (Devi et al., 2022), lentil

(Barghi et al., 2013), common bean (Silva et al., 2019; Vargas

et al., 2021), tomato (Pham et al., 2020) and sorghum

(Djanaguiraman et al., 2018).

Emphasizing on yield and yield-related parameters such as

pods plant-1, significant genetic variability ranging from (2.43-

15.07 during the first year) and (2.77-15.9 during second year),

for seed yield plant-1 (0.11-2.73g during the first year) and (0.16-

2.93g during the second year) and for total seeds plant-1 (6.2-

62.9 during the first year) and (6.7-71.2 during the second year)

under heat stress was recorded. Thus, genotypes with high pod

setting, high seed yield plant-1 and high seed number plant-1

under heat stress environment could be promisingly selected as

heat tolerant genotypes. Based on these traits, Mash114,

PantU31, UTTARA and IPU18-04 were selected as heat

tolerant urdbean genotypes. Similarly, in previous studies,

based on these yield traits, genotypes “40–10,” “Naparnyk,”

and “CDC Meadow” in pea (Jiang et al., 2020), G122, PI

163120, Cornell 503 in common bean (Shonnard and Gepts,

1994; Rainey and Griffiths, 2005a), ICC1205, ICC15614,

GNG469, GNG1488, GNG1499, and GNG1969 in chickpea

(Devasirvatham et al., 2013), B89-200 and TN88-63 in cowpea

(Ehlers and Hall, 1998), 72578, 70548, 71457 and 73838 in lentil

(Delahunty et al.,2015) and 55–437 and 796 in groundnut (Ntare

et al., 2001) were identified to be heat tolerant.

Correlation studies indicated that electrolyte leakage trait

had highly negative association with all the physiological (except

MDA) and yield and yield-related traits under heat stress

condition, indicating genotypes having high value for

electrolyte leakage are highly heat- sensitive genotypes.

However, other physiological traits viz., chlorophyll content,

chlorophyll florescence, relative water content stomatal

conductance showing high and positive association with yield

and yield related traits viz., seed yield plant-1, total seeds plant-1

and single seed weight indicated that selection of urdbean

genotypes with high chlorophyll content, enhanced stomatal

conductance and high relative water content under heat stress

could be highly heat tolerant. Positive association of chlorophyll

content, stomatal conductance trait related to photosynthesis

process with yield and yield-related traits ranging from seed

yield plant-1, pod number plant-1 and single seed weight under

heat stress has been reported in chickpea (Devi et al., 2022),

lentil (Sita et al., 2017), and common bean (Petkova et al., 2007).

FIGURE 9

Heat map based on the response of urdbean genotypes to heat stress in the year 2019.
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FIGURE 10

Heat map based on the response of urdbean genotypes to heat stress in a growth chamber.

FIGURE 11

Morphological effects of heat stress on Urdbean plants; plant height under control environment (A), reduced plant height under heat stress (HS)
environment (B), healthy leaves under control environment (C), scorching of leaves under HS (D), chlorosis in the HS (E), Leaf senescence and
abscissionin the HS (F).
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Studies conducted in controlled high temperature

environment of growth chamber revealed PGP and PVP to be

highly correlated with pods plant-1 and could be used as vital

indicators of heat tolerance. Earlier studies have also indicated

that these traits could be used for selecting heat tolerant

genotypes in chickpea (Devi et al., 2022), common bean

(Rainey and Griffiths, 2005), lentil (Sehgal et al., 2019) and

tomato (Gonzalo et al., 2021).

High heritability of various morpho-physiological, yield and

yield related traits could be of great importance for selecting

these traits for screening of heat tolerant genotypes in various

crops. High heritability for chlorophyll content, stomatal

conductance, seed yield plant-1, pods plant-1, single seed

weight, as noticed in the present study has also been noted in

heat tolerant chickpea (Jha et al., 2019; Devi et al., 2022), rice

(Enzi et al., 2022), tomato (Panthee et al., 2018), wheat (Rebetzke

et al., 2013) under high temperature environment.

5 Conclusion

Heat stress related events are becoming serious constraints

for crop yield including urdbean thus, causing great concern for

global food security. Harnessing the genetic variability for

various morpho-physiological and yield and yield related traits

existing across the crop gene pool could be one of the important

approaches for developing heat tolerant crop cultivars including

urdbean. A wide range of genetic variability for various morpho-

physiological and yield and yield related traits were captured for

a selected 26 urdbean genotypes under both non-stress and heat

stress environment for consecutive two years. A selected four

heat tolerant and four heat-sensitive genotypes were further

validated for their heat stress response under controlled growth

chamber condition. Based on the results obtained from both

outdoor and controlled growth chamber conditions, yield and

yield related traits viz., pods plant-1, seeds plant-1, single seed

FIGURE 12

Urdbean plants showing various distinctive impacts on it are the reproductive phase when raised under control and heat stress environment.
Plants grown under control temperature have healthy bud (A) healthy flower (C) filled pods (egg), normal seeds (I) compact anther (K, L)
receptive stigma (O, P) higher pollen load (S, T) and possess viable pollen grains (W, X). However, plants raised under heat stress conditions
have more frequency of aborted buds (B) aborted flowers (D) unfilled and aborted pods (F, H) shrivelled seeds (J) distorted anther (M, N) non-
receptive stigma (Q, R) less pollen load (U, V) and non-viable pollen grains (Y, Z) healthy flower bud (A) aborted flower bud (B) healthy flower
(C) aborted flower (D) healthy pods (E) aborted pod (F) normal pod length (G) reduced pod length (H) healthy seeds (G) shrivelled seeds (H)
healthy anther under stereo-microscope (I) healthy anther under SEM (J) distorted anther.
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weight and seed yield plant-1 showed strong positive correlation

with chlorophyll, chlorophyll fluorescence, and stomatal

conductance. Similarly, these yield traits had very strong

correlation with reproductive traits, pollen germination and

pollen viability except electrolyte leakage and malondialdehyde

content. These results indicated selection for high pollen

germination % and high pollen viability % and yield and yield

related traits could assist in selecting heat tolerant urdbean

genotypes. Thus, the candidate genotypes PantU31, Mash114,

UTTARA and IPU18-04 exhibiting high pod setting and high

seed yield plant-1 under heat stress imposed under outdoor and

growth chamber environment could be potentially used as heat

tolerant donor parents for future urdbean breeding programme.

Further, these genotypes can be assessed for their heat tolerance

across the multiple locations for confirming their heat tolerance

based on various locations.
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Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity

and form an important part of the healthy diet of the human being. Besides providing

basic nutrition, they have great potential for boosting human health. The balanced

consumption of vegetables is highly recommended for supplementing the human body

with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds.

However, the production and quality of fresh vegetables are influenced directly or

indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits

and harvestable yield are the most common effects of HS among vegetable crops. Heat-

induced morphological damage, such as poor vegetative growth, leaf tip burning, and

rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion,

and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation

unprofitable. Further studies to trace down the possible physiological and biochemical

effects associated with crop failure reveal that the key factors include membrane

damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues,

which may be the key factors governing heat-induced crop failure. The reproductive

stage of plants has extensively been studied for HS-induced abnormalities. Plant

reproduction is more sensitive to HS than the vegetative stages, and affects various

reproductive processes like pollen germination, pollen load, pollen tube growth, stigma

receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound

and robust adaptation and mitigation strategies are needed to overcome the adverse

impacts of HS at the morphological, physiological, and biochemical levels to ensure

the productivity and quality of vegetable crops. Physiological traits such as the stay-

green trait, canopy temperature depression, cell membrane thermostability, chlorophyll

fluorescence, relative water content, increased reproductive fertility, fruit numbers, and
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fruit size are important for developing better yielding heat-tolerant varieties/cultivars.

Moreover, various molecular approaches such as omics, molecular breeding, and

transgenics, have been proved to be useful in enhancing/incorporating tolerance and

can be potential tools for developing heat-tolerant varieties/cultivars. Further, these

approaches will provide insights into the physiological and molecular mechanisms that

govern thermotolerance and pave the way for engineering “designer” vegetable crops for

better health and nutritional security. Besides these approaches, agronomic methods are

also important for adaptation, escape and mitigation of HS protect and improve yields.

Keywords: high temperature, vegetables, heat, environment, climate change

INTRODUCTION

Vegetables are parts of plants cultivated worldwide for
consumption as flowers (e.g., cauliflower, broccoli), fruits (e.g.,
okra, tomato, cucumber, capsicum), leaves (e.g., spinach, lettuce,
brassica, cabbage), tubers (e.g., potato, sweet potato), pods and
seeds (e.g., common bean, chickpea, broad bean, mungbean,
peas) (Peet and Wolfe, 2000). Vegetables contain secondary
metabolites with bioactive properties, including carotenoids (e.g.,
carrots, pepper, tomato, spinach), polyphenols (e.g., tomato,
cabbage), glucosinolates (e.g., brassica), saponins (e.g., beans,
pea), and terpenes (e.g., carrots, tomato) (Crozier et al., 2006).
These bioactive compounds are metabolic intermediates of
primary metabolic processes, which are not essential for plant
growth but are used in plant defense responses and plant-insect
interactions and can stimulate human health. Clearly, vegetables
are an important part of the human diet as they replenish
our body with various nutrients, including vitamins, dietary
minerals, fibers, proteins, antioxidants, carbohydrates, small
amounts of fat, and phytochemicals with anticarcinogenic,
antiviral, antifungal, and antibacterial properties (Osagie and
Eka, 1998; Teng et al., 2021). While not a major energy source,
vegetables nourish our bodies with much-needed minerals
and vitamins. According to Food and Agriculture Organization
(FAO) statistics, vegetables are the source of dietary requirements
about 60% of vitamin A and 90% of vitamin C (Gruda, 2005).
Vegetables can earn extra income for farmers as they are seasonal
plants with higher yields per hectare than staple crops (Abewoy,
2018). The market value of vegetables is assessed by their quality;
FAO and WHO provide many quality attributes for grading
vegetables, e.g., color, size, shape, texture, aroma, shelf life,
and storability (Gruda, 2005). Vegetables are categorized into
two groups according to their growing season; warm-season
vegetables include capsicum, common bean, cucumber, cowpea,
okra, tomato, and mungbean (Peet and Wolfe, 2000), while
cool-season vegetables include brassica, broad bean, broccoli,
cabbage, cauliflower, lettuce, radish, spinach, soybean, pea, and
potato (Peet and Wolfe, 2000) (Table 1).

Like other crops, vegetables are also affected by environmental
changes that can render vegetable cultivation unprofitable.
Abiotic stresses, mainly the high temperature (heat stress.
HS), severely limit crop quantity, quality, nutritional status,
and production (Boote et al., 2005; Aleem et al., 2021).
High temperatures affect the overall growth and development

of vegetable crops by altering morphology, physiology, and
enzymatic activities. Heat stress (HS) accelerates phenology,
shortening the vegetative and reproductive stages. HS reduces
vegetable quality, such as changing the color and texture of
fruits (e.g., cucumber, pepper, and tomato) (Zipelevish et al.,
2000). In general, HS affects morphological, physiological, and
biochemical processes of the plant by hampering photosynthetic
activity, source-sink relationship, and altered enzymatic activities
(Bita and Gerats, 2013; Janni et al., 2020). The quality of
vegetables is also impacted by HS, through a change in color
and texture of fruit (e.g., cucumber, pepper, and tomato)
(Zipelevish et al., 2000). HS also affects the nutritional status
of vegetables; for instance, reducing lycopene in tomato (Gross,
1991) and β-carotene in spinach and lettuce (Oyama et al.,
1999) and increasing nitrate levels to harmful levels for
human consumption.

Due to climate change, in most regions of the world, rising
temperatures will decrease quantity and quality of vegetables
crops. Studies of Waithaka et al. (2013) suggested that changes in
the climate (increased temperatures) will also provide avenues to
grow crops in areas where they could not be grown previously.
Climate change scenarios further suggest that development
of crop and cultivar choice—especially for water-limited or
high-temperature areas—will be an important strategy to have
adequate yields under changing climate (Thomas et al., 2007).
Hence, targeted studies are needed to assess the impact of
high-temperature stress on the growth, yield, and quality (taste,
flavor, color, nutritional content) of vegetable crops, with suitable
agronomic strategies, developed to create heat-tolerant cultivars
or mitigate HS.

HEAT STRESS AND VEGETABLES

High temperatures adversely impact plant growth and
development (Hasanuzzaman et al., 2013). The constantly rising
average surface temperature due to global warming is stressful for
all plant growth and development phases, limiting metabolism
and productivity, particularly in tropical and subtropical
countries (Li et al., 2018). According to the newly released
sixth assessment report of IPCC (2021), temperature during the
twenty-first century is likely to increase by 1.5◦C of warming
within just the next two decades, and by 4.5◦C, depending on
the rate of greenhouse gas emissions. As plants are sedentary
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TABLE 1 | Threshold temperature for some vegetable crops at different stages of plant development.

Crop Family Threshold

temperature (◦C)

Response References

Cool season vegetables

Vegetative stage

Broccoli

(Brassica oleracea var. italica)

Brassicaceae 30◦C Reduced growth and development Hatfield and Prueger, 2015

Cabbage

(Brassica oleracea var. capitata)

Brassicaceae 30◦C Reduced growth and development Warland et al., 2006

Cauliflower

(Brassica oleracea var. botrytis)

Brassicaceae 25◦C Reduced leaf growth Lin et al., 2015

Reproductive stage

Brassica

(Brassica napus)

Brassicaceae 29◦C Reduction in flower number Morrison and Stewart, 2002

Broad bean

(Viciafaba)

Fabaceae 30/22◦C Accelerate Floral development Bishop et al., 2016

Broccoli

(Brassica oleracea var. italica)

Brassicaceae 35◦C Arrest of inflorescence development Björkman and Pearson,

1998

Seed filling/maturity stage

Chickpea

(Cicer arietinum L.)

Fabaceae 30◦C Reduced yield Summerfield and Wien,

1980

Lettuce

(Lactuca sativa)

Asteraceae 24◦C Reduced yield Jenni, 2005

Pea

(Pisum sativum)

Fabaceae 25.6◦C Reduced yield Pumphrey and Ramig, 1990

Potato

(Solanum tuberosum)

Solanaceae 30/20◦C Reduced yield Hancock et al., 2014

Warm season vegetables

Vegetative stage

Cucumber

(Cucumis sativus)

Cucurbitaceae 38◦C Impede growth and development Yu et al., 2022

Okra

(Abelmoschus esculentus)

Malvaceae 35◦C Decreased leaf size Hayamanesh, 2018

Reproductive stage

Capsicum

(Capsicum annuum L.)

Solanaceae 33◦C Inhibition of fertilization or early fruit

development

Erickson and Markhart,

2002

Common bean

(Phaseolus vulgaris)

Fabaceae 34/24◦C Reduced pollen viability Boote et al., 2005

Soybean

(Glycine max)

Fabaceae 26/20◦C Delay flowering and distort pod

development

Nahar et al., 2016

Tomato

(Lycopersicon esculentum)

Solanaceae 32/26◦C Abnormalities in male and female

reproductive tissues

Peet et al., 1998

Seed filling/maturity stage

Cowpea

(Vigna unguiculata)

Fabaceae 36/27◦C Reduced yield Craufurd et al., 1998

Okra

(Abelmoschsusesculentus)

Malvaceae 35◦C Reduced yield Hayamanesh, 2018

organisms, they acclimate to HS by using avoidance mechanisms
or programmed cell death (Mittler et al., 2012; Singh, 2013;
Zhang T. et al., 2020). Each vegetable crop has temperature
threshold for its growth and development; HS will occur beyond
the upper threshold for temperature (Wahid et al., 2007; Prasad
et al., 2008, 2017). HS impedes photosynthesis through reduced
carbon assimilation, ATP reduction, and oxidative damage
to chloroplasts, with simultaneous reductions in dry matter
accumulation and yield (Sharkey, 2005; Farooq et al., 2011). HS

adversely affects vegetative and reproductive plant parts (Bita
and Gerats, 2013); thus, the impact of HS varies depending on
the developmental stage and crop species (Prasad et al., 2017; Li
et al., 2018) (Table 2).

IMPACT ON VEGETATIVE GROWTH

Moderate high temperatures stimulate early vegetative growth
and accelerate physiological maturity (Nahar et al., 2015).
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TABLE 2 | Noticeable symptoms of heat stress in some vegetable crops.

Crop species Symptoms References

Cabbage (Brassica

oleracea var. capitata)

Loosening or bolting of heads,

smaller and tighter heads, rough

leaf texture

Chang et al., 2016

Capsicum (Capsicum

annuum)

Sun scald, yellowing and wilting Moretti et al., 2010

Cauliflower (Brassica

oleracea var. botrytis)

Leafy and uneven heads, puffy

buds, yellow eyes and leaves,

narrow leaves and hollow stems

Lin et al., 2015

Common bean

(Phaseolus vulgaris)

High fiber in pods, brown and

reddish spots in pods

Moretti et al., 2010

Lettuce (Lactuca sativa) Tip burn, bolting, loose puffy

heads, decreases β-carotene

content

Han et al., 2013

Potato (Solanum

tuberosum)

Secondary growth and heat

sprouting

Hancock et al., 2014

Spinach (Spinacia

oleracea)

Reduced leaf area and shoots

dry weight, reduces β-carotene

content

Chitwood et al., 2016

Tomato (Lycopersicon

esculentum)

Fruit cracking, sunscald,

hampered lycopene synthesis,

blossom end rot, internal white

tissue, blotchy ripening,

Moretti et al., 2010

During seed germination, HS reduces germination percentage
and seedling emergence, reduces radical and plumule growth in
germinated seedlings, and causes abnormal seedlings and poor
seedling vigor (Hasanuzzaman et al., 2013). At later stages of
vegetative growth, HS reduces plant height, leaf area, and leaf,
stem, pod, root, and total biomass (Kumar et al., 2013). Leafy
vegetables require proper growth and development of vegetative
parts for realizing only the yield but also the quality. In 45-
day-old cabbage plants exposed to 40◦C for 6, 12, 24, 48, or
72 h, HS caused loosening or bolting of heads, smaller and
tighter heads, and rougher leaf texture (Chang et al., 2016).
Likewise, in 30-day-old cauliflower plants exposed to 40◦C for
6, 12, 24, 48, 72, or 96 h, HS caused uneven heads, puffy buds,
yellow eyes, narrow leaves, reduced leaf growth, and reduced
petiole-to-blade ratio (Lin et al., 2015). HS (34.5◦C) further
delayed the curd induction stage and decreased the chlorophyll
content in cauliflower plants; effects were more distinct in heat
susceptible genotypes where they were unable to develop curd
at high temperature and continued their vegetative growth until
temperature fall below 30◦C (Aleem et al., 2021). Exposing 4- to
5-leaved lettuce seedlings to 42/37◦C for 3 days reduced seedling
germination and caused tip burn, rib discoloration, and bolting
(Jenni and Yan, 2009; Han et al., 2013). In spinach exposed to
35◦C for 21 days, HS decreased seed germination (Chitwood
et al., 2016). In potato, high temperature (30–40◦C) inhibited
tuber development and blocked the tuberization signal (Reynolds
and Ewing, 1989). Potato plants exposed to 30/20◦C (day/night)
for 1 week had reduced yields by 16% compared to plants
grown at 22/16◦C due to decreased carbon transport to the sink
organ (Hancock et al., 2014). Further, reduced yield has been
reported in 50 potato cultivars when exposed to heat stressed

conditions (35/28◦C) than control conditions (22/18◦C) (Zhang
G. et al., 2020). Likewise, in 6–7-leaved radish seedlings exposed
to 40◦C for 12 and 24 h, HS affected fleshy taproot growth and
development, reducing quality and yield (Zhang et al., 2013)
(Figure 1).

IMPACT ON REPRODUCTIVE GROWTH

Reproductive stage is highly sensitive to HS; even a single degree
increase for a few hours can be fatal for proper reproductive
growth, contributing to poor yields (Prasad et al., 2017).
However, studies on reproductive tissues are difficult to assess
because gamete development and fertilization are major events
that occur over short periods. Here, we categorize the effects
of HS in vegetables during three stages of reproduction: pre-
fertilization (flower bud initiation, flowering, male and female
gametophyte development), fertilization (pollen dehiscence,
pollination, pollen reception by stigma, pollen tube growth and
fertilization), and post-fertilization events (fruit/pod set, seed
development, seed filling) (Figure 2; Table 3).

Pre-fertilization Events
Flower Bud Initiation
High-temperature stress causes flower bud abortion and
abscission of reproductive organs inmany crop species, including
tomato (Levy et al., 1978; Pressman et al., 2002; Sato et al.,
2002), common bean (Konsens et al., 1991), pea (Guilioni
et al., 1997), brassica (Angadi et al., 2000), capsicum (Aloni
et al., 2001; Erickson and Markhart, 2002), resulting in severe
yield losses. Common bean grown at 32/27◦C (from flowering
to pod maturity) experienced greater abscission and drop of
flower primordia (2–5mm) and flower buds (>5mm) than at
27/17◦C (Konsens et al., 1991). In capsicum, high-temperature
stress (33◦C for 120 h) affected flower buds (<2.5mm) and
early pistil development less than stamen development, whereas
buds (3–4mm) during tetrad formation and dissolution were
highly sensitive to elevated temperature, leading to pollen sterility
(Erickson andMarkhart, 2002). Flower and flower bud abscission
also occurred in heat-stressed (35/15◦C for 7 days at early stage)
brassica species (Angadi et al., 2000). HS (32/28◦C) severely
affected flower initiation and development in tomato (Levy
et al., 1978; Sato et al., 2002). HS (32/26◦C for 8 days before
anthesis) in capsicum reduced and altered sucrose mobilization
and utilization by flower buds and flowers, resulting in fruit drop
and abscission and thus reducing yield by 17% compared to
normal sown (28/22◦C) (Aloni et al., 2001).

Flowering
HS during flowering reduces flower numbers by damaging flower
organs, reducing yield (Morrison and Stewart, 2002). HS also
decreases the number of flowering branches and thus flower
numbers per plant (Harsant et al., 2013). Damage to flower
organs has been reported in many crops, including chickpea
(Tickoo et al., 1996), common bean (Suzuki et al., 2001; Omae
et al., 2012), and mungbean (Kaur et al., 2015). Early flowering
and flower abortion are other impacts of HS, as reported in pea
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FIGURE 1 | A schematic representation of the effects of heat stress (HS) on vegetative and reproductive growth stages that reduce yield. Heat stress at the vegetative

stage promotes leaf damage, rib discoloration in leafy vegetables, biomass reduction in food legumes, and secondary tuberization in potato. Heat stress at the

reproductive stage negatively affects the overall route from Microspore Mother Cell (MMC) development to fruit setting/seed filling through pollination and fertilization.

The male gametophyte is more prone to heat stress, leading to poor pollen germination, pollen load, and pollen tube growth inside the style and inability to fertilize the

ovule at the required rate.

(Guilioni et al., 1997), tomato (Sato et al., 2004), common bean
(Omae et al., 2012), and mungbean (Sharma et al., 2016).

Male Gametophyte Development and Function
Threshold temperatures needed to impose damages in
reproductive tissues are less than the one needed to cause
injury to vegetative tissues. Male gametophytes are more
sensitive to HS than female gametophytes, with lower threshold
temperatures than vegetative tissues. HS damage can occur

pre-pollination or post-pollination, impairing fertilization and
ultimately reducing seed set (Sage et al., 2015). Pre-pollination
events that are highly susceptible to high temperature are (1)
meiosis I and meiosis II of the microspore mother cell (Young
et al., 2004), (2) development and subsequent dissolution of the
tapetum layer (Farooq et al., 2017), and (3) exine and intine
formation (Nahar et al., 2016). Post-pollination events affected
by HS are (1) pollen load, (2) pollen germination, (3) pollen tube
growth, and (4) fertilization (Hedhly et al., 2009; Sita et al., 2017).

Frontiers in Plant Science | www.frontiersin.org 5 June 2022 | Volume 13 | Article 878498

190

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chaudhary et al. Heat Tolerance in Vegetables

FIGURE 2 | Generalized overview of the effects of heat stress (HS) on the reproductive stage of plants, broadly categorized into three events: pre-fertilization,

fertilization, and post-fertilization. Heat stress affects the flowering stage by promoting early flowering and flower bud/flower abortion. During male gametophyte

development, heat stress disrupts meiosis and decreases tapetum growth, resulting in shriveled and non-viable pollen grains. During female gametophyte

development, heat stress reduces style and ovary size and callose deposition, reduces stigma receptivity, and causes early embryo abortion. Moreover, immature

dehiscence and malformed pollen grains result in poor pollination and fertilization. Heat stress during post-fertilization decreases the seed filling rate and disturb

source–sink relations, potentially reducing yield manifold.

The sensitivity of male gametophytes to HS varies according to
plant species (Li et al., 2018).

HS reduced fertility of microgametophytes in brassica (Rao
et al., 1992) and impaired meiosis in tomato, damaging pollen
germination and pollen tube growth (Foolad, 2005). In soybean,
HS reduced pollen production, germination, tube elongation,
and impaired pollen development (no apertures and disturbed
exile ornamentation) (Salem et al., 2007; Nahar et al., 2016;
Djanaguiraman et al., 2019). In capsicum, HS produced shrunken
and empty microspores without an exine layer (Erickson and
Markhart, 2002). Shriveled pollen grains under HS may be due to
decreased starch accumulation in anther walls and pollen grains
reducing soluble sugars for their development (Pressman et al.,
2002).

Female Gametophyte Development and Function
Female gametophytes are relatively more tolerant to HS than
male gametophytes (Hedhly, 2011). HS impairs megaspore

mother cell development by impeding meiosis, reducing
pistil size, reducing stigma receptivity due to poor pollen
adhesion, reducing stigmatic papillae for holding pollen grains,
interrupting nutrient transport from style to pollen impeding
pollen tube germination and growth, as noticed in chickpea
(Kaushal et al., 2016), bean (Porch and Jahn, 2001) and cowpea
(Ahmed et al., 1992). HS, reduced callose deposition in lentil
styles (Bhandari et al., 2017), reduced the amount of attractants
from ovule synergids cells that misguide the pollen tube (Saini
et al., 1983) to severely affect the fertilization. Furthermore,
HS damages the embryo sac and causes early embryo abortion,
likely arresting fertilization; for instance, in tomato, HS exposure
(40◦C for 3 h) for 4 days before anthesis resulted in aborted
embryos with degenerated eggs and synergids (Iwahori, 1965).
Abnormalities in embryo sac development have also been
observed in brassica, reducing seed set and yield (Polowick and
Sawhney, 1988). HS also reduced ovule viability in common
beans (Ormrod et al., 1967; Suzuki et al., 2001). Unlike, male
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TABLE 3 | Effect of heat stress on reproductive tissues of some vegetable crops.

Crop Heat stress Effect References

Brassica

(Brassica napus)

35/23◦C Reduced in-vitro pollen germinability, pollen viability, and thinner pollen

tubes with stunted & convoluted morphology.

Young et al., 2004

Microspore and pollen development are sensitive to heat stress. Sato et al., 2002

Bell pepper

(Capsicum annuum)

33◦C Pollen development (during megaspore mother cell (MMC) meiosis) is

greatly reduced.

Reduced pollen viability, reduced anther dehiscence, reduced mature pollen

grains, slightly swollen and deformed (affect pollen morphology) and without

exine layer.

Erickson and Markhart, 2002

Broad bean

(Vicia faba)

34/26◦C Pollen germination Bishop et al., 2016

Broccoli

(Brassica oleracea var. italica)

35◦C Arrested the development of flower buds Björkman and Pearson, 1998

Chickpea

(Cicer arietinum L.)

40/25◦C Pollen germination, pollen tube growth

Pod set

Devasirvatham et al., 2013

Common bean

(Phaseolus vulgaris)

33/27◦C

33/29◦C

Anther indehiscence and pollen sterility

Degeneration of tapetal cells.

Gross and Kigel, 1994

Cowpea

(Vigna unguiculata)

33/30◦C Another development Ahmed et al., 1992

Mungbean

(Vigna radiata L.)

>40/28◦C Reduced pollen viability, pollen germination, pollen load, stigma receptivity

and ovule viability

Sharma et al., 2016

Okra

(Abelmoschus esculentus)

45◦C Incomplete dehiscence, shrunken pollen, smaller anther sacs, reduced

pollen number, pollen viability, and pollen germination.

Hayamanesh, 2018

Pea

(Pisum sativum)

36/24◦C Decreased pollen germination, pollen tube growth, pod length, and seed

number per pod.

Jiang et al., 2015

Soybean

(Glycine max)

38/28◦C Decreased in-vitro pollen germination. Djanaguiraman et al., 2013b

Tomato

(Lycopersicon esculentum)

32/26◦C Reduced number of pollen grains, pollen viability, and pollen germination. Sato et al., 2002

31/25◦C Reduced number of pollen grains, pollen viability, and pollen germination. Firon et al., 2006

29◦C Decreased fruit number, fruit weight/plant and seed number/fruit Peet et al., 1998

gametophyte, detailed impacts of HS on female gametophyte
organs are, however, barely known. This may be because of the
reason that female gametophyte is protected inside the ovary and
sheltered and difficult to reach and dissect.

Fertilization
High-temperature stress (>30◦C) negatively impacts male and
female gametophyte development, leading to poor development
and deformities of reproductive tissues, limiting the fertilization
process in many plant species (Saini and Aspinall, 1982; Prasad
et al., 2017). HS also reported to affect the flower pollination rate
in tomato resulting in low fruit set with reduced lycopene content
and fruit quality (Alsamir et al., 2021) Indehiscent anthers, non-
viable pollen, and poor stigma receptivity are possible causes
for fertilization failure and sterility imposition in many crops,
including chickpea (Kumar et al., 2013), soybean (Board and
Kahlon, 2011), mung bean (Kaur et al., 2015), tomato (Pressman
et al., 2002), common bean (Porch and Jahn, 2001), and capsicum
(Erickson and Markhart, 2002).

Post-fertilization Events
Fruit/Pod Set
High-temperature stress affects the proportion of flowers
forming fruits (fruit set) (Prasad et al., 2000). HS (38/30◦C)

markedly decreased fruit weight (51.6%), fruit diameter (25%),
fruit length (30%), and seed number per fruit (57%) in
sweet pepper compared with normal temperature (33/21◦C)
(Thuy and Kenji, 2015). Peet et al. (1998) reported that high
temperature (29◦C) decreased fruit number (10%), total fruit
weight/plant (6.4%) and seed number/fruit (16.4%) inmale fertile
tomatoes compared to optimum temperature (25◦C). The high
temperature impaired pollen development and release, leading
to reduced fruit set in male-fertile tomatoes compared with
male-sterile lines. Similarly, fruit set and fruit size in tomato
plants declined at 29/23◦C compared to 24/18◦C (Saha et al.,
2010). HS seriously damaged fruit set in tomatoes exposed to
40◦C for 4 h before anthesis and reduced the pollen germination
from 79.5% (at 30/17◦C) to 30% and pod set from 63% (at
30/17◦C) to 14.9% (Rudich et al., 1977). In Common bean, high
temperature (32/27◦C) reduced the pod set from 17 to 97%, seed
set by 39–98%, and seeds/pod by 42 to 73% compared to control
temperature (22/17◦C) (Gross and Kigel, 1994). Similar finding
on bean plants exposed to even higher temperatures (40/30◦C)
had fewer filled pods, parthenocarpic pod development, sickle-
shaped pods, reduced seed size, and fewer seeds/pod and
total seeds than control condition (Prasad et al., 2002; Soltani
et al., 2019). In peas, high temperature (32◦C for 6 h) at the
reproductive stage increased the abortion rate of reproductive
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organs (flower buds and young pods) from 20 to 50% which
reduce seed yield (Bueckert et al., 2015).

Seed Development and Seed Filling
Seed formation and seed filling are the last phases of the life
cycle of seed plants; and; HS drastically affects seed development
and the seed-filling phase, increasing the fraction of abnormal
and shriveled seeds (Sehgal et al., 2018). In common bean, a
linear relationship between temperature and grain weight was
recorded resulting in a significant decrease in seed weight, i.e.,
0.07 g per ◦C when temperature was raised beyond 31/21◦C
(Prasad et al., 2002). Seed development starts from cell division
and, when seed cells are fully formed, storage reserves start
to accumulate (Egli, 1998). Direct effects of HS on division
and size of endosperm cells are well-documented (Commuri
and Jones, 2001). Reduced division and size of endosperm cells
results in accumulation of fewer carbohydrates, proteins, lipids,
and starch accumulate in developing seeds. HS also accelerates
the rate and duration of seed filling, resulting in abnormal
seeds and significant yield losses (Farooq et al., 2017). Not
only yields, HS affects seed quality characteristics, reducing
seed number and size, degrading nutrient composition, and
decreasing seed viability, through impaired nutrient uptake,
assimilate partitioning, and translocation (Prasad et al., 2008).
Starch, proteins, and lipids are the principal reserves transferred
from the main plant to developing seeds (Alencar et al., 2012),
but HS limits their synthesis and translocation during seed
filling, affecting grain quality (Farooq et al., 2017), and could
be due to decreased enzyme activity. The activity of starch
synthesizing enzymes, such as starch synthase, sucrose synthase,
and invertase, decrease under HS, as reported in pea (Smith and
Denyer, 1992) and chickpea (Kaushal et al., 2013). Similarly, HS
disrupts seed storage proteins, such as β-glycocynin and globulin
11S in soybean (Hashizume and Watanabe, 1979; Iwabuchi
and Yamauchi, 1984), and sucrose-synthesizing enzymes and
proteins that aid in sucrose translocation. Reduced sucrose
synthase activity affects the sucrose and starch ratio, decreasing
the transfer of soluble carbohydrates to developing ovules, as
reported in pea (Jeuffroy et al., 1990) and cowpea (Ismail and
Hall, 1999). Reduced crop duration and seed filling has been
correlated with an inefficient light capture ability (canopy growth
rate) in small plants, decreasing the photosynthetic rate and
thus seed size, as reported in soybean (Board and Kahlon,
2011). Prasad et al. (2002) reported a linear relationship between
temperature and grain weight in common bean, with seed weight
decreasing by 0.07 g per ◦C at temperatures above 31/2.

PHYSIOLOGICAL ASPECTS AND
CELLULAR FUNCTIONS UNDER HEAT
STRESS

Membranes
HS disrupts the organization of the plasma membrane by
increasing unsaturated fatty acids, thus making the membrane
more fluid (Hofmann, 2009), and influencing the cellular
functions by initiating a signal cascade (Firmansyah and
Argosubekti, 2020; Hassan et al., 2021). HS also accelerates the

kinetic energy and movement of various molecules through the
membrane. Further, protein denaturation and altered tertiary and
quaternary structure of membrane proteins increase membrane
fluidity (Savchenko et al., 2002). Thus, HS disturbs primary
processes of plant-like photosynthesis and respiration due to
increased permeability or solute leakage from cells (Figure 3).
Therefore, cell membrane thermostability trait used to evaluate
HS on plants and identify heat-tolerant and heat-sensitive
genotypes; for example, in soybean (Martineau et al., 1979),
potato (Chen et al., 1982), and cowpea (Ismail and Hall,
1999). The effectiveness of cell membrane thermostability
assays depends on the tissue type and stress type used for
plant adaptation. It is also unknown whether membrane
thermostability is linked to other plant characteristics that confer
heat tolerance, such as growth and yield.

Photosynthesis
Photosynthesis is highly sensitive to HS and photosynthetic
activity reduces drastically under HS. Studies have detailed
the affected photosynthetic mechanisms that ultimately reduce
the photosynthetic capacity of plants (Berry and Bjorkman,
1980; Sharkey, 2005). Thylakoid reactions, Rubisco activity, and
photosynthetic pigments are generally disturbed by HS. HS
primarily affects the physical state and structure of the thylakoid
membrane by triggering thylakoid leakiness and unstacking
thylakoids, damaging the D1 protein of PSII (Sharkey, 2005). To
counterbalance these reactions, zeaxanthin synthesis increases,
affecting the normal state of thylakoids (Havaux, 1996). HS
disturbs the electron flow between the two photosystems (PSI
and PSII) and reduces the photosynthetic efficiency of plants.
HS also accelerates the phosphorylation of light-harvesting
complex (LHCII) and disconnects it from PSII core complex,
thus decreasing its turnover rate, but increasing the turnover rate
of PSI (Wise et al., 2004). HS dephosphorylates core proteins
(D1, D2, and CP43), deactivating PSII (Yamamoto et al., 2016).
HS alters the fluorescence induction parameters, measured as
the Fv/Fm ratio; this ratio helps to determine the quantum
efficiency of PSII and indicates the rate of linear electron flow
and overall photosynthetic performance of plants (Jamil et al.,
2007). HS decreased chlorophyll a fluorescence, PII quantum
yield, photochemical quenching, and increased respiration rate
in soybean (Djanaguiraman et al., 2013a).

Along with thylakoid reactions, HS triggers the deactivation
of Rubisco (Crafts-Brandner and Salvucci, 2000). Rubisco
being dual enzyme catalyses the carboxylation of ribulose−1-5-
bisphosphate in the photosynthetic Calvin cycle and oxygenation
in the photorespiratory pathway; the ratio between two reactions
governs the photosynthetic efficiency of plant. But the elevated
temperature inhibits the CO2 fixation and increases the
oxygenase activity and reduces photosynthetic rate (Crafts-
Brandner and Salvucci, 2000). Rubisco activation is not only
associated with pH and Mg2+ concentration of stroma but
also with Rubisco activase (RA); an ATPase. RA induces
the activation of the Rubisco by increasing the proportion
of its active sites and brings conformational changes that
allow CO2 and Mg2+ for activation and carbamylation. High
temperature can disturb the pH and Mg2+ concentration of
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FIGURE 3 | Model representing morphological, physiological, biochemical, and molecular characteristics of plants under heat stress. Morphological damages at

vegetative and reproductive stages can be visualized as direct measures of plant stress. At the physiological level, these damages are associated with leaky plasma

membrane, altered transpiration, chlorophyll damage, reduced photosynthesis, respiration, and nodulation rate. Disturbed physiological processes can promote

oxidative stress damage observed through stress indicators like increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Protein damage and

impaired carbon and nitrogen metabolism due to impaired enzymatic activities further exaggerate stress levels at the biochemical level. Heat shock proteins (HSPs),

heat shock factors (HSFs), and quantitative trait loci (QTLs) related to heat stress responses of plants may play a key role in the plant adaptation. HSPs and HSFs have

a central role in regulating the activity of various genes that amplify the production of antioxidants and osmolytes and are helpful governing thermotolerance.

stroma, interfering with the carbamylation step of Rubisco
activation (Weis, 1981a,b) and also caused RA dissociation
because of its poor structural stability and heat labile nature
(Demirevska-Kepova and Feller, 2004). Few reports have
noticed that heat stress affects the photosynthesis through
heat sensitivity of Rubisco and RA activity, for instance in
tomato, heat stress (40◦C for 8 h for 6 days to 3 weeks old
plant) decreased the accumulation of Rubisco enzyme’s isoforms
(Parrotta et al., 2020), as in pea (Haldimann and Feller, 2005),
potato (Cen and Sage, 2005) and spinach (Zhao Q. et al.,
2018).

Pea plants exposed to HS reduced chlorophyll biosynthesis
due to the destruction of various enzymes involved in
biosynthetic pathways (Dutta et al., 2009; Aleem et al.,
2021). HS decreased the activity of first enzyme of the
biosynthetic pathway, 5-aminolevulinate dehydratase, in

cucumber (Tewari and Tripathy, 1998). Decreased chlorophyll
content, Chl a/b ratio, and chlorophyll/carotenoid ratio have
been reported in many crops under HS (Aien et al., 2011)
(Table 4). Similarly, HS stress causes pre-mature leaf senescence
in soybean leaves which results in decreased photosynthesis
primarily due to decreased chlorophyll content, higher reactive
oxygen species, lower antioxidants, and increased thylakoid
membrane damage (Djanaguiraman and Prasad, 2010). HS
increased ethylene production in leaves which was one of the
reasons of premature leaf senescence in soybean (Djanaguiraman
and Prasad, 2010). Detailed anatomical studies showed that HT
stress significantly increased the thicknesses of the palisade and
spongy layers and the lower epidermis (Djanaguiraman et al.,
2013a). In addition, HT stress damaged the plasma membrane,
chloroplast membrane, thylakoid membranes; mitochondrial
membranes, cristae, and matrix were distorted which led
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TABLE 4 | Effect of heat stress on photosynthesis in some vegetable crops.

Crop species Temperature Effect References

Broad bean

(Vicia faba)

42◦C Decreased content of Chl a, Chl b, and carotenoids Hamada, 2001

Cabbage

(Brassica oleracea var. capitata)

40◦C Decrease in Fv/Fm values and photosynthetic efficiency Chang et al., 2016

Cauliflower

(Brassica oleracea var. botrytis)

40◦C Significant reduction in chlorophyll fluorescence Fv/Fm
Inhibition of CO2 fixation and damage to photosynthetic electron

transport at site of PS II

Lin et al., 2015

Chickpea

(Cicer arietinum L.)

40/30◦C Reduced chlorophyll content Kaloki et al., 2019

Common bean

(Phaseolus vulgaris)

45◦C Partially-reversible inactivation of PS-II and dissociation of light

harvesting complex from reaction center of PS-II

Destruction of PS-II reaction center and formation of

quenching species

Costa et al., 2003

Cowpea

(Vigna unguiculata)

30/25◦C Reduced rate of photosynthesis McDonald and Paulsen, 1997

Cucumber

(Cucumis sativus L.)

33–48◦C Decline in PS II activity and photochemical quenching

Decreased net photosynthetic rate

Ding et al., 2016

42◦C Chlorophyll biosynthesis Tewari and Tripathy, 1998

Mungbean

(Vigna radiata)

>40/28◦C Decline in PS II activity Sharma et al., 2016

Okra

(Abelmoschus esculentus)

>39◦C Adverse effects on the photosynthetic apparatus Hayamanesh, 2018

Pea

(Pisum sativum)

>40◦C Decreased photosynthetic electron transport

Complete suppression of photosynthetic electron transfer

Haldimann and Feller, 2005

45◦C Decreased CO2 assimilation and O2 evolution Georgieva et al., 2000

Potato

(Solanum spp.)

25◦C Decreased photosynthetic rate

Decreased Chl a+b and carotenoid content

Aien et al., 2011

38◦C Rapid and irreversible loss of PS II Aien et al., 2011

Soybean

(Glycine max)

38/28◦C

38/30◦C

Decrease in leaf photosynthetic rate by 20.2%

Significantly affects net photosynthesis and total chlorophyll

content

Decreased chlorophyll content, photosynthetic rate,

Nahar et al., 2016

39/20◦C Severely damaged PSII site Li et al., 2009

Spinach

(Spinacia oleracea)

40◦C Inhibition of oxygen evolution

Cleavage of D1 protein of PSII

Yoshioka et al., 2006

Tomato

(Solanum lycopersicum)

36/38◦C Decreased Fv/Fm values and PS II damage

Decreased net photosynthetic rate

Decreased chlorophyll content

Zhou et al., 2017

to decreased photosynthesis (Djanaguiraman et al., 2013a)
(Figure 3).

Nitrogen Content, Fixation and Nodulation
Nitrogen is one of the main nutrients required by the plant
for proper growth, development and productivity. It is the
constituent of various important organic compounds like amino
acids, proteins, nucleic acids, enzymes, and the chlorophyll
molecule (Christophe et al., 2011). Nitrogen content in the plant
measured as nitrate, ammonium ions, and proteins. Besides
performing basic roles in plants, its metabolism is also very
crucial for heat tolerance because it increases the osmolyte
content and antioxidant enzyme activity (Ru et al., 2022).
Studies have also shown their role in promoting the HSP
production (Heckathorn et al., 1996). Osmolytes like proline
and quaternary ammonium compounds, being nitrogen rich and

accumulate in plants under heat stress conditions (Rivero et al.,
2004). Ammonium ion and proline accumulation confer heat
tolerance to tomato and promoting higher biomass production
(Rivero et al., 2004). During the reproductive period, nitrogen
concentration successively increases when temperatures rise
for example in pea, when high temperature occurs during or
after flowering seed N concentration is increased (Larmure
et al., 2005). Similarly, in soybean, seed N concentration
increases during the reproductive period at temperature 40/30◦C
(Thomas et al., 2003). Increases in the accumulation of proteins;
level of globulin protein storage causing a reduction of the
albumin/globulin content in mature seeds (Hurkman et al.,
2009). In pea, the final level of vicilin storage proteins was higher
under heat stress (Bourgeois et al., 2009). However, in tomato
roots, it has been reported that HS disturbs enzymes involve
in nitrogen metabolism (nitrate and ammonium assimilation)
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thereby decreasing total protein content and level of nutrient
uptake and assimilation (Giri et al., 2017). Further, studies on the
contrasting genotypes of brassica revealed that HS (40/30◦C for
7 days) negatively affected the activities of nitrogen assimilation
enzyme including Glutamate synthase (GOGAT), glutamine
synthetase (GS), glutamate dehydrogenase (GDH), more in heat
sensitive genotype (WS-6) as compared to heat tolerant genotype
(WS-1). These enzymes help in possessing better photosynthetic
nitrogen use efficiency (Yuan et al., 2017).

Symbiotic nitrogen fixation in leguminous crops depends on
the presence of appropriate Rhizobium species in the vicinity of
root zone, however, almost all processes starting from rhizobial
survival to host infection and nitrogen fixation dependmainly on
the environmental factors, such as soil temperature (Bordeleau
and Prévost, 1994). High temperature interferes with almost
all processes of symbiotic nitrogen fixation, directly as well as
indirectly, soil temperature affects not only the rhizobial survival
in the root zone but also the exchange of molecular signals
between two symbiotic partners (Alexandre and Oliveira, 2013).
Rhizobial strains have an optimum soil temperature (25–30◦C)
for their growth and nitrogen fixing ability and Rhizobia are
greatly affected by high soil temperature. However, optimum
temperature varies with the crop species, for instance, in soybean,
weak rhizobia were formed at 40◦C and no rhizobia were isolated
at 45◦C (Chen et al., 2002). HT interferes directly with nodule
development as it hampers nodule development and increases
nodule senescence (Aranjuelo et al., 2007). HS affects indirectly
the nitrogen fixation by inhibiting the formation of root
hairs, infection thread formation, reducing the nodulation sites,
adherence between bacteria and root hair (bacterial infection),
and bacteroid formation (Zahran, 1999; Hungria and Vargas,
2000; Alexandre and Oliveira, 2013).

Elevated temperature also affects nodule growth rate, nodule
size, and nodule fixation ability, as reported for common bean
exposed to HS (35 and 38◦C/8 h/day) at the flowering stage
(Hungria and Franco, 1993). Another study showed that at 47◦C
temperature no nodules were formed in common bean (Karanja
and Wood, 1988). Studies have shown that nodulation ability
varies inversely with temperature, and legume species differ
in their temperature endurance; for instance, common bean is
more sensitive to temperature stress than cowpea and soybean
for nitrogen fixation (Piha and Munns, 1987). In cowpea, the
optimum temperature for nodule growth and development is
30–36◦C; temperatures above 40◦C lead to fewer or no nodules
(Day et al., 1978). In common bean, nodules that formed at high
temperature (≥35◦C) were inefficient and unable to fix nitrogen
(Hungria and Franco, 1993). Piha and Munns (1987) noted that
nodules formed at 35◦C were small and had low nitrogenase
activity. The optimum temperature for nodule growth is 20◦C
for pea and 25–30◦C for soybean (Michiels et al., 1994).
HS decreased nodulation ability in mungbean (Sharma et al.,
2016). In common bean, HS affected nitrogen fixation due to
decreased activity of enzymes involved in nitrogen metabolism,
such as dinitrogenase complex, glutamine synthetase (GS), and
glutamine synthase (GOGAT), decreasing the concentration of
ureids-N in nodules and xylem sap (Hungria and Kaschuk,
2014). Prasad et al. (2000) observed that high soil temperatures
(35◦C) significantly decreased number of nodules and nodule dry

weight per plant compared to optimum soil temperature (25◦C)
in peanut.

C.N ratio: Plant growth and defense are both fuelled by
compounds synthesized from a common pool of carbon and
nitrogen, implying the existence of a competition for carbon and
nitrogen allocation to both metabolisms. The ratio of carbon to
nitrogen (C: N) of an organ is often regarded as a convenient
indicator of growth and quality. Almost a century ago, plant
nutrition was considered a crucial factor in controlling flowering
time. According to Klebs (1913), a high endogenous carbon:
nitrogen ratio promotes flowering, while a low carbon: nitrogen
ratio promotes vegetative growth. Inferred from the fact that
(a) conditions favoring photosynthetic CO2 fixation generally
accelerate flowering and (b) high nitrogen intake (fertilizers)
might delay or reduce reproductive development in some plants
(Bernier et al., 1981). The flowering percentage increased when
NH4NO3 concentration decreased from 16.5 to 8 g l−1, in tomato
plant (Dielen et al., 2001). Royer et al. (2013) revealed that
C:N ratio in the pool of resources in the total plant, were
correlated with the concentrations of diverse compounds of
the primary and secondary metabolisms in young tomatoes.
Under HS, Peet et al. (1997) found that in tomato plants, the
carbon and nitrogen metabolism get imbalanced, and stem and
petiole elongation consume too much nutrients, which in turn
reduces the dry matter storage of the plant, affecting tomato
quality and yield. Soil mixed with dry powder of Sesbania plant
(leaves + tender stems; C: N ratio 15.4) plays effective role in
enhancing resistance and resilience (stability) of soil microbial
activity against heat stress (Kumar et al., 2014). Heat stress may
accelerate leaf senescence and increase respiration rate which
consequently decreases plant N and C availability for seeds and
shorten the duration of seed filling period in soyabean (Egli and
Wardlaw, 1980). Thus, balanced C:N ratio plays an important
role in plant physiological process. Similarly, Larmure et al., 2005
demonstrated that the lower seed N concentration in pea plant
at the average temperature range (13–23◦C) can be explained by
prolonged duration of the seed-filling associated with the lower
seed N concentration, higher C availability for the seeds. Because
the rate of seed N accumulation per degree-day mainly depends
on N availability to seed filling, the rate of N accumulation was
higher at 25/20◦C than at lower temperature. HS reduces seed
size and modifies the C:N ratio in the period of seed formation in
pea (Guilioni et al., 2003).

Antioxidants and Oxidative Stress
Severe HS generates ROS, such as hydrogen peroxide (H2O2)
and superoxide radical (O−

2 ), as byproducts of the aerobic
metabolism, which adversely affect cellular metabolism,
such as lipid membrane peroxidation, and damage nucleic
acids and proteins (Bita and Gerats, 2013). Plants respond
to ROS production by activating enzymatic and non-enzymatic
ROS scavenging systems (Bita and Gerats, 2013). The main
ROS scavenging enzymes are superoxide dismutase (SOD),
catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX)
glutathione reductase (GR), whereas non-enzymatic chemical
are ascorbic acid (ASC) and glutathione (GSH) (Suzuki et al.,
2012). SOD helps scavenge O−

2 whereas CAT and POX degrade
H2O2. Elevated levels of these antioxidants are crucial in

Frontiers in Plant Science | www.frontiersin.org 11 June 2022 | Volume 13 | Article 878498

196

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chaudhary et al. Heat Tolerance in Vegetables

imparting thermotolerance in plants (Awasthi et al., 2014). In
soybean, ROS accumulation (mainly H2O2 and O−

2 ) due to
HS is associated with decreased enzyme activities of various
antioxidants (Djanaguiraman et al., 2005, 2013a). Similarly, GR
and CAT activities decreased in common bean under oxidative
stress (Babu and Devaraj, 2008). Likewise, decreased APX and
GR expression occurred in mungbean exposed to HS (Sharma
et al., 2016). However, relationship between antioxidant enzymes
and HS is far more complex in tomato where activity of SOD,
APX increased and CAT activity decreased (Zhou et al., 2014).
This complexity was also evident in capsicum where, NADPH
oxidase and CAT activity increased at high temperature (Gulen
et al., 2012). In chickpea, tolerant genotypes had higher SOD,
CAT, APX, and GR activity than sensitive genotypes under
HS (40/30◦C and 45/35◦C) (Kumar et al., 2013). Moderate HS
increases the expression of various enzymatic antioxidants, while
severe HS suppresses it (Wilson et al., 2014).

DEFENSE RESPONSES

In addition to antioxidants, plants endure HS by activating major
defense mechanisms which are mainly comprised of increased
production of heat shock proteins (HSPs) and compatible
solutes (Sakamoto and Murata, 2002; Wahid et al., 2007;
Mittler et al., 2012; Khan and Shahwar, 2020). HSPs are the
molecular chaperones that protect the misfolded proteins from
irreversible aggregation, sorting, translocation, and degradation,
important for establishing cellular homeostasis in normal and
stressed conditions (Vierling, 1991). There are five classes
of HSPs categorized according to their molecular weight:
HSP100, HSP90, HSP70, HSP60, and Small HSP (sHSP), and
located in the cytoplasm as well as cellular orgenelles, nucleus,
chloroplast, mitochondria, and endoplasmic reticulum (Wang
et al., 2004). Different chaperone families though have a
peculiar role but coordinate cellular homeostasis. Chaperones
also maintain crosstalk with signaling molecules, antioxidants
(acerbate peroxidase), and osmolytes (trehalose, proline, glycine
betaine) (Wang et al., 2004; Kang et al., 2022). Various
reports have confirmed accumulation of all HSP families in
different vegetables and food legumes under HS, with greater
accumulation of sHSPs than other HSPs, as reported for spinach
(Guy and Li, 1998), tomato (Preczewski et al., 2000), soybean
(Ortiz and Cardemil, 2001), common bean and cowpea (Simões-
Araújo et al., 2003), potato (Ahn et al., 2004), cabbage (Park
et al., 2013), pea (Talalaiev and Korduym, 2014), faba bean
(Kumar et al., 2015), capsicum (Li et al., 2015), chickpea (Meena
et al., 2017), and broccoli (Lin et al., 2019). Accumulation of
these proteins helps plants to re-establish homeostasis under HS
conditions. Hence, the expression level of HSPs and HSFs could
be manipulated genetically to improve heat tolerance ability.
Overexpression of HSPs facilitates transformed cells to endure
HS better than non-transformed cells (Grover et al., 2013); for
instance, overexpression of sHSP (HSP21) in transgenic tomato
imparts stable PSII, shielding photosynthesis from temperature-
dependent oxidative stress and accumulating more carotenoids
under HS (Neta-Sharir et al., 2005). Furthermore, overexpression
of HSFs facilitates the expression of HSPs; for example,
overexpression of HSFA1 in transgenic soybean enhanced the

expression of GmHSP70 leading to thermotolerance (45◦C) (Zhu
et al., 2006). Similarly, overexpression of transcription factor
(CaWRKY40) enhanced thermotolerance in capsicum (Dang
et al., 2013).

The role of various osmolytes, including proline and
glycine betaine, in imparting heat tolerance is well-documented
(Sakamoto and Murata, 2002). Osmolytes are low molecular
weight compounds that can buffer cellular redox potential under
HS. Proline is a well-studied osmolyte, concentration of which
increases by several-fold under stress conditions. A heat-tolerant
cabbage genotype accumulated more proline (and soluble sugars
and antioxidants) than a sensitive genotype (Song et al., 2019).
Similarly, Paul et al. (2014) even suggested using increased
proline and soluble sugars in potato under HS can used as
markers for selecting heat-tolerant genotypes. Increasing HS
gradually increased proline and soluble sugar contents in lettuce
seedlings, indicating heat tolerance (Han et al., 2013). The role of
proline in thermotolerance was also confirmed using exogenous
proline applications. Kaushal et al. (2011) noted that exogenous
treatment of proline induced thermotolerance in chickpea by
protecting the enzymes involved in carbon and antioxidant
metabolism. Glycine betaine is another compound that confers
heat tolerance; Aien et al. (2011) suggested that glycine betaine
imparts heat tolerance in potato genotypes under HS conditions.

Heat Avoidance
Heat avoidance through transpiration cooling is the best
strategy adopted by plants to minimize the losses (Julia and
Dingkuhn, 2013) Under moderately HS conditions, plants can
accelerate growth to promote plant thermonastic responses and
architectural changes to move susceptible parts away from soil
heat flow or to improve evaporative cooling (Havko et al.,
2020). In soybean, tomato, or cabbage, moderately high ambient
temperature induces hypocotyl elongation, and tomato displays
leaf hyponasty (Quint et al., 2016; Casal and Balasubramanian,
2019; Vu et al., 2019). Pea canopies architecture and leaf type
as traits of heat resistance can avoid heat and maintain a lower
canopy temperature as leafed cultivars have greater leaf surface
area and likely greater transpirational cooling, assuming soil
moisture availability and an adequate root system (Tafesse et al.,
2019). Another study showed that the leaf movement capacity in
beans was shown to function in direct sunlight avoidance and
benefited the plant by protecting it against photoinhibition and
by maintaining leaf temperatures lower than the air temperature
(Pastenes et al., 2004). Thus, as novel donors with higher heat
tolerance or escape provides, there is an ample evidence for
systematic exploration of wild species and accessions (Prasad
et al., 2017) for introducing these traits.

IDENTIFICATION OF TOLERANT
GENOTYPES AND IMPROVING
ADAPTATION AND MITIGATION TO HS

Physiological Approaches
Heat tolerance is a polygenic trait greatly influenced by
environmental changes (Blum, 2018). HS effects are stage-
specific, with the response at one stage differing from the
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response at another. Breeders employ various techniques
to minimize the impact of an unpredictable environment
on crops. Conventional breeding is the oldest but most
prevalent method, primarily based on selecting phenotypic plant
characters (Acquaah, 2015). In recent decades, new techniques
have emerged based on morpho-physiological plant characters
merged with conventional breeding methods to screen superior
varieties. These methods exploit inbuilt plant properties to
cope with HS and assist in selecting heat-tolerant genotypes.
Screening germplasm of various vegetable crops using various
physiological traits linked to heat tolerance would be useful for
breeding programs focused on developing HS tolerant genotypes.
Although there are several methods or traits used for screening,
some of the most common are discussed.

Stay-Green Assay
The stay-green character is the plant’s ability to retain chlorophyll
and remain green for longer to sustain photosynthesis,
especially during seed filling (Thomas and Howarth, 2000).
However, the adverse impacts of HS cause leaves structural
changes and chlorophyll degradation and it ultimately induces
premature, leaf senescence (Djanaguiraman and Prasad, 2010;
Jha et al., 2014). Moreover, the onset of HS during seed filling
affects various physiological processes, including increased leaf
senescence (chlorophyll loss), altered source–sink relationship,
and decreased assimilation of reserve foodmaterial in developing
seeds, limiting plant yield (Luche et al., 2015). Therefore,
delayed leaf senescence may be associated with heat tolerance,
enabling plants to maintain their photosynthetic ability (Lim
et al., 2007). High chlorophyll and carotenoid contents in leaves
improve the photochemical efficiency of plants and reduces ROS
concentration in plants such as tomato (Zhou et al., 2015) and
pea (Tafesse, 2018).

In addition, the stay-green character positively correlates
with canopy temperature depression. Stay-green genotypes have
lower canopy temperatures due to transpirational cooling than
non-stay-green genotypes (Kumari et al., 2013). In addition
to these modifications, HS also causes plant morphological
and architectural modifications like leaf hyponasty (measured
through leaf angles), leaf petiole elongation, small and thin leaves,
that are helpful for the plants to keep their canopies cool. For
instance, the cucumber species have hyponastic leaves (Park
et al., 2019) and reduced leaf size is found in potato (Tang
et al., 2018) and capsicum species (Utami and Aryanti, 2021)
under heat stress conditions. These processes involve various
signaling cascades that mediate the developmental shaping for
environment adaptation in plants (Gil and Park, 2019). This
trait is also associated with grain yield and quality and abiotic
stress tolerance (Kamal et al., 2019). Hence, the stay-green trait is
essential for improving crop yield and useful for imparting heat
tolerance (Joshi et al., 2007; Kusaba et al., 2013), and thus may be
an important genetic trait for improving crop yield under HS.

Canopy Temperature Depression
Canopy temperature depression (CTD) is usually measured as
the difference between air and canopy temperature, indicating
the plant’s ability to lower its foliar temperature by transpirational

cooling, as measured by an infrared thermometer. CTD also
reflects plant water status and is influenced by the plant’s ability
to extract water and the transpiration difference between air and
plant. Accordingly, CTD has been used to select heat-tolerant
and drought-tolerant genotypes. Plants that can maintain cooler
canopies during seed filling can tolerate high-temperature stress
(Munjal and Rana, 2003). Heat-tolerant varieties of capsicum
(Gajanayake et al., 2011) have been selected based on the stay-
green trait. In soybean, there is a direct relationship between
CTD, canopy greenness, photosynthetic rate, and yield (Kumar
et al., 2017). Thus, the CTD trait can be used as a critical genetic
trait for crop improvement aimed at increased yields at the
vegetative stage.

Cell Membrane Thermostability
HS is amounts of sensed by cell membranes of leaf tissues,
weakening cell membrane integrity/rigidity due to an increased
degree of unsaturated fatty acids that increase membrane
fluidity. This may change membrane permeability and disturb
the selective transport of molecules across the membrane,
affecting cellular homeostasis (Marcum, 1998). HS can directly
affect membrane integrity through photochemical modifications
during photosynthesis or ROS (Bita and Gerats, 2013). Cell
membrane thermostability (CMT) can be evaluated with an
electrolyte leakage test for screening crops for heat tolerance. The
method is simple, quick, and inexpensive compared with whole-
plant screening and can be used to assess plant tissue responses
at the vegetative stage (Yeh and Lin, 2003). Electrolyte leakage
is measured using a conductivity meter, with higher conductivity
values indicating higher membrane damage (Nyarko et al., 2008).
The CMT test has been used to screen heat-tolerant varieties of
many crops, including soybean (Martineau et al., 1979), potato
(Nagarajan and Bansal, 1986), cowpea (Ismail and Hall, 1999),
cabbage (Nyarko et al., 2008), cauliflower (Aleem et al., 2021)
chickpea (Kumar et al., 2013), mungbean (Sharma et al., 2016),
and cucumber (Ali et al., 2019).

Chlorophyll Fluorescence
Chlorophyll fluorescence—expressed as the Fv/Fm ratio (Fv:
variable fluorescence; Fm: maximum fluorescence)—is used to
detect the state of PSII function in terms of the energy absorbed
by PSII in chlorophyll and damage to photosynthetic apparatus
by excess light in vivo (Maxwell and Johnson, 2000). Chlorophyll
fluorescence is a rapid, reliable, and inexpensive procedure
for predicting photosynthetic performance under HS. Reduced
Fv/Fm values indicate damage to the light-harvesting complex
(Moradpour et al., 2021). Chlorophyll fluorescence has been
used to select heat-tolerant varieties of sweet pepper (Hanying
et al., 2001), common bean (Stefanov et al., 2011), chickpea
(Kaushal et al., 2013), mungbean (Kaur et al., 2015), tomato
(Zhou et al., 2015; Poudyal et al., 2018), and okra (Hayamanesh,
2018). Makonya et al. (2019) showed that tolerant chickpea
genotypes maintain higher Fv/Fm during HS than sensitive
genotypes, and Fv/Fm positively correlates with grain yield in the
field. Killi et al. (2020) reported the retention of PSII function
at elevated temperature positively correlated with antioxidant
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activity, confirming the applicability of this trait for selecting
heat-tolerant varieties.

Relative Water Content
Relative water content indicates the hydration status of plants and
reflects the balance between leaf water supply and transpiration
rate. Hence, it can measure leaf water deficit and the degree
of damage under HS (Mullan and Pietragalla, 2012). High
transpiration increases water loss, which can cause tissue
dehydration and wilting (Mazorra et al., 2002). Therefore,
genotypes that can maintain turgid leaves will minimize HS
effects and have numerous physiological advantages. Gowda
et al. (2011) suggested using RWC as selection criteria for
improving yield under HS. High temperature (40–42◦C) at the
vegetative and reproductive stage gradually reduced the RWC of
capsicum genotypes, more so at the reproductive stage (Puneeth,
2018). RWC has been used to select heat-tolerant genotypes
of mungbean (Sharma et al., 2016), capsicum (Puneeth, 2018),
common bean (Chavez-Arias et al., 2018), lentil (Sita et al., 2017),
tomato (Zhou et al., 2018), cucumber (Ali et al., 2019), and potato
(Handayani and Watanabe, 2020) where genotypes with high
RWC under HS were rated as heat tolerant.

Stomatal Conductance
Stomatal conductance measures the rate of carbon dioxide
entering or water vapor exiting stomata. This change in
transpiration rate facilitates changes in leaf temperature and
water potential (Farquhar and Sharkey, 1982). Leaf stomatal
conductance is often recognized as an important trait for
evaluating differences in response to changing environments.
It can be used to determine trait such as photosynthetic CO2

uptake, leaf temperature, and water loss (Vialet-Chabrand and
Lawson, 2019). Decreased stomatal activity under a changing
environment can significantly affect plant growth and biomass
(Way and Pearcy, 2012). In vivo stomatal conductance can
be measured with a steady-state leaf porometer and gas
exchange. HS increases in vivo adaxial stomatal conductance
relative to the control (Sharma et al., 2016). Low stomatal
responses under stress can limit photosynthetic rate and cause
unnecessary transpiration, decreasing plant water use efficiency
and productivity (Matthews et al., 2018). This phenomenon has
been used to select heat-tolerant genotypes of sweet pepper
(Hanying et al., 2001); tomato (Camejo et al., 2005; Abdelmageed
and Gruda, 2009), chickpea (Kaushal et al., 2013), and mungbean
(Kaur et al., 2015).While many studies have successfully used one
of the traits above to select heat-tolerant genotypes, combining
multiple traits would reflect heat tolerance better than relying on
a single trait.

Reproductive Function, Gamete Viability
and Fruit-Set
Fruit yield in vegetables crops is a function of fruit numbers and
fruit size. There is a strong and positive correlation between fruit-
set and gamete viability (Prasad et al., 2017). Gamete functions
(pollen and ovule) is the most important factor for fruit-set under
HS. In tomato, fruit-set has been shown to correlate with pollen
viability (Firon et al., 2006). In general, heat tolerant genotypes

maintain higher pollen viability compared to heat susceptible
genotypes (Dane et al., 1991). Gamete functions depend on its
viability, which can be evaluated by viability assays like staining,
in-vitro and in-vivo germination of pollen, and ovule function.
Genotypes are known to differ in gamete viability under HS
stress. Singh et al. (2015) concluded from their research on
tomato that traits like fruit-set and pollen viability could be
used as a strategy to screen genotypes for HS. In general, the
combination of gamete viability and fruit-set provide tolerance
to HS (Paupière et al., 2017b; Pham et al., 2020). Similarly
observations were also made on peppers (Aloni et al., 2001;
Reddy and Kakani, 2007).

Cardinal temperatures (Tmin, Topt, and Tmax) for pollen
grain germination can be used to screen germplasm for HT stress
tolerance. Results from in-vitro studies showed that genotypes
varied in response to temperature for cardinal temperatures,
and the differences in cardinal temperatures were mainly
responsible for tolerance/susceptibility of genotypes to HT stress
in soybean (Djanaguiraman et al., 2019) and peanut (Kakani
et al., 2002). The genotypes having higher ceiling temperature
(Tmax) for pollen germination values tend to be HT tolerant
in most cases. Cardinal temperature for pepper were different
among susceptible and tolerant cultivars (Reddy and Kakani,
2007) and can be used to identify temperature tolerant or
sustainable genotypes of pepper (Gajanayake et al., 2011). All the
aforementioned traits based on leaf function are used collectively
to select heat tolerant cultivars. Though many studies have
successfully employed one trait for selection of heat tolerant
genotypes, a combination of these traits reflects a better status
of heat tolerance rather than relying on a single trait.

OMICS APPROACHES

Genomics
Various modern genome-based technologies can be used to
introduce genetic variations for HS tolerance into plants.
Under high-temperature stress, plants activate a complex chain
of molecular responses, including heat-stress-responsive genes
that control primary and secondary metabolism, transcription,
translation, and lipid signaling, or protein modifications,
including phosphorylation HS transcription factors (HSFs) that
regulate differential expression of HSPs (Janni et al., 2020).
HSPs and HSFs are key players in the acquisition of the HS
response. HSFs are mainly involved in sensing and relaying the
HS signal to activate the response (Mittler et al., 2012). Genome-
wide associated studies (GWAS) have been conducted on a few
vegetable crops to search for novel genes and transcription factors
associated with heat tolerance. Genomic studies on cabbage
(Brassica rapa ssp.) disclosed the role of differentially expressed
long non-coding (lncRNAs), mRNAs, and microRNAs. Their
expression is associated with phytohormones such as salicylic
acid (SA) and brassinosteroids (BRs), possibly involved in heat
tolerance. Of these, 25 lncRNAs were co-expressed with ten
heat-responsive genes (Wang A. et al., 2019). NAC, a large
family of transcription factors, was analyzed in cabbage; 188
genes were identified that play a major role in resistance to
high-temperature stress (Ma et al., 2014). Analysis of the potato
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Hsp 20 gene family revealed 48 putative Hsp20 (StHsp20) that
accumulated under heat treatment. Different levels of these
transcripts were upregulated during different HS exposures.
The transcription of HSPs are regulated by HSFs that play an
important role in imparting thermotolerance in plants (Zhao P.
et al., 2018). Guo et al. (2015) characterized 35 putative Hsp 20
genes (CaHsp20) located on 12 chromosomes in thermotolerant
(R9) and thermosensitive (B6) lines of pepper in four tissues
(roots, stem, leaves, and flowers). Under high temperature stress
(40◦C), most of the CaHsp20 genes had higher expression in both
lines, more so in the thermosensitive line. Chidambaranathan
et al. (2018) identified 22 Hsfs in the desi (ICC4958) and kabuli
(CDC Frontier) genomes of chickpea (15-day-old seedlings;
heat treatment of 35 ± 2◦C). Field analysis was undertaken to
compare the expression pattern at the podding stage. HS at the
seedling and pod development stages upregulated the expression
of CarHsfA2, A6a, A6c, and B2a, indicating their role in
conferring HS tolerance in chickpea. Yang et al. (2016) recorded
26 HSF (Sly HSF) genes in tomato, with HS (38◦C) increasing
the expression of most, especially SlyHSF-05/07/13/18/20/23/24.
Expression of the SlyHSF-18 gene increased manifold compared
to the control, indicating its strong response and correlation
to high temperature sensitivity. Moreover, SlyHSF-02 was the
main regulator for activating the heat response and acquiring
thermotolerance in tomato.

Transcriptomics
Transcriptomics refers to the study of the transcriptome [entire
set of transcripts (mRNA, tRNA, and rRNA, miRNA, siRNA,
snRNA, snoRNA, and lncRNA)] expressed in a cell, tissue,
organ, or organism. It represents all RNA synthesized, including
protein-coding, non-coding, spliced, polyadenylated, and RNA-
edited transcripts (Imadi et al., 2015). Transcriptomics reveals
themolecularmechanism underlying the phenotype and explains
how genes are expressed and interconnected (Jha et al., 2017).
High throughput methods (microarray, RNA sequencing, RT-
PCR) are used to analyze the expression level of multiple
transcripts in different conditions. Several transcriptome studies
in vegetable crops under HS have revealed the molecular basis for
heat tolerance.

Transcriptome analysis in heat-stressed spinach (42◦C for
15 days) revealed the expression of 4,145 transcripts (2,420
upregulated and 1,725 downregulated) in heat-tolerant and heat-
sensitive genotypes (Guo et al., 2020). An enrichment analysis
showed that the major metabolic difference between tolerant and
sensitive genotypes was carbohydrate metabolism (Guo et al.,
2020). Similarly, transcriptome analysis revealed 23,000–30,000
expressed genes in soybean seeds and differentially expressed
genes (DEGs; 5–44% of expressed genes) (Gillman et al., 2019).
The DEGs were measured at high temperature in mature,
imbibed, and germinated seeds in a heat-tolerant (PI 587982A)
and conventional high-yielding variety (S 99-11986), with 7,789
DEGs common between genotypes, 11,833 common between
mature and imbibed seeds, and 13,344 common between imbibed
and germinated seedlings (Gillman et al., 2019). In capsicum,
seedling transcriptomics revealed 3,799 DEGs in R597 (heat-
tolerant genotype) and 4,010 DEGs in S590 (heat-sensitive

genotype), related to hormones, HSPs, transcription factors, and
calcium and kinase signaling (Li et al., 2015). Further, R597 had
higher expression of transcription factors and hormone signaling
genes than S590 (Li et al., 2015). Transcriptomic analysis of heat-
tolerant PS-1 and heat-sensitive H-24 tomato genotypes under
HS (40◦C for 1 h) revealed upregulated genes associated with
protease inhibitors, HSPs, and transcription factors, manifold
higher in the tolerant genotype than the sensitive genotype
(Sadder et al., 2014).

Proteomics
Proteomic analysis in heat-stressed radish leaves (advanced
inbred line NAU-08Hr-10) revealed eleven deferentially
expressed proteins, of which four belonged to HSPs, four to
energy and metabolism, two to redox homeostasis, and one to
signal transduction (Zhang et al., 2013). Comparative proteome
analysis of heat-tolerant (JG 14) and heat-sensitive (ICC16374)
chickpea genotypes under HS during anthesis revealed that
482 heat-responsive proteins (related to photosynthesis, energy
metabolism, and signaling molecules) were synthesized in
higher amounts in the heat tolerant genotype compared to the
sensitive genotype (Parankusam et al., 2017). Proteomics of
spinach (50-day-old) exposed to 37/32◦C for 24, 48, or 72 h
identified heat-stress-responsive proteins in heat-tolerant (Sp75)
and heat-sensitive (Sp73) lines (Li et al., 2019). The abundance
pattern indicated that HS inhibited photosynthesis, initiated
ROS scavenging pathways, and sped up carbohydrate and amino
acid metabolism. A comparative proteomic study showed that
heat-sensitive genotypes have a lower ability for photosynthetic
adaptation, osmotic homeostasis, and antioxidant enzyme
activities than heat-tolerant genotypes (Li et al., 2018). Ahsan
et al. (2010) used a proteomics approach to study the tissue-
specific protein expression pattern in heat-stressed soybean
seedlings (40 ± 2◦C for 12 h), identifying 61, 54, and 35
differentially expressed proteins in roots, leaves, and stem,
respectively. Many of the proteins related to HSPs and the
antioxidant system were upregulated.

Metabolomics
Recentmetabolite profiling has focused on importantmetabolites
that govern temperature stress tolerance (Guy et al., 2008).
Wang J. et al. (2019) studied the metabolism of heat-tolerant
(17CL30) and heat-sensitive (05S180) capsicum cultivars; the
tolerant genotype accumulated 94 differentially accumulated
metabolites (DEM) while the sensitive genotype accumulated
108 DEM. Both genotypes shared common metabolites, but they
were more highly expressed in tolerant genotypes. Metabolite
profiling of tomato anthers exposed to 38◦C for 2 h revealed
that flavonoids (alkaloids and flavonoids in young microspores)
protect against HS (Paupière et al., 2017a,b). A metabolomics
study on heat-stressed soybean seeds revealed 275 metabolites
that comprised antioxidants, including ascorbate precursors,
tocopherol, flavonoids, phenylpropanoids, which were more
enriched in tolerant than sensitive genotypes (Chebrolu et al.,
2016).

Frontiers in Plant Science | www.frontiersin.org 15 June 2022 | Volume 13 | Article 878498

200

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chaudhary et al. Heat Tolerance in Vegetables

MOLECULAR BREEDING

Of late, molecular breeding has emerged as one of the
important tools to identify progeny plants possessing the targeted
genes/QTLs including the presence of several genes or ascertain
the amount of genome of recurrent parent in a plant. Molecular
breeding relies on molecular markers and hence the outcome,
unlike the phenotyping, is not influenced by environmental
factors. The molecular breeding has been exploited successfully
in crop breeding and has led to the development of crop varieties
possessing resistance to diseases or varieties with resistance
genes pyramids (Janni et al., 2020). Molecular breeding methods
to improve heat tolerance include (i) transfer of quantitative
trait loci, (ii) marker-assisted selection. Other methods include
marker assisted recurrent selection, marker-assisted pyramiding,
and single nucleotide polymorphism. These methods pave the
way for breeding stress tolerance in plants (Collard and Mackill,
2007). These methods pave the way for breeding stress tolerance
in plants (Collard and Mackill, 2007).

Quantitative Trait Loci
QTL is a stretch of genomic regions on a chromosome that
is linked to a quantitative trait. Usually, this stretch contains
several genes and each QTL contribute partially to the trait in
question; and hence, several QTLs together govern a trait. In
molecular breeding, whole QTL is transferred to the recurrent
parent utilizing markers flanking to the QTLs and sometimes
using markers present within the QTL region. The exploitation
of molecular breeding for QTLs transfers in breeding programs,
a QTL must be well-defined and demonstrated to be linked to
a particular trait (Collard and Mackill, 2009). Heat tolerance is a
polygenic trait governed by several genes (Golam et al., 2012) and
several QTLs. Unprecedented advances in genomics, especially
molecular marker development, have identified numerous QTLs
contributing to HS tolerance by dissecting various traits ranging
from phenological, physiological, biochemical, reproductive
biology to yield and yield-related traits (Lucas et al., 2013; Wen
et al., 2019; Song et al., 2020; Jha et al., 2021; Vargas et al., 2021)
in various vegetable crops, including bottle gourd (Lagenaria
siceraria), cowpea (Vigna unguiculata [L.] Walp.), common
bean, chickpea, chili, and tomato (Table 5). In broccoli (Brassica
oleracea var. italica), five QTLs were identified under HS—
QHT_C02, QHT_C03, QHT_C05, and QHT_C07 from the heat-
tolerant parent and QHT_C09 from the heat-sensitive parent,
with a positive epistatic co-relation between QHT_C03 and
QHT_C05 for heat tolerance and APX activity was co-located
with QHT_C03 (Branham et al., 2017). Likewise, QTLs such as
QHT_C02, QHT_C05, and QHT_C09 were co-located with the
AP2 gene governing floral development under HS (Aukerman
and Sakai, 2003). Similarly, the meristem identity gene (TFL)
was associated with QHT_C02 (Duclos and Björkman, 2008).
Subsequently, two novel QTLs contributing to heat tolerance
were uncovered by phenotypic evaluation of double haploid-
based mapping population for two consecutive summer seasons
and by employing QTL-seq approach in broccoli (Branham and
Farnham, 2019). Recently, subjecting genome wide association
(GWAS) study of one hundred forty two lines unearthed a total

of fifty seven significant marker trait associations for various
physiological and yield related traits under heat stress in Brassica
rapa (Chen et al., 2022). In tomato, Xu et al. (2017) mapped
13 QTLs for heat tolerance linked with reproductive traits,
including pollen viability, pollen number, style protrusion, anther
length, style length, flower per inflorescence, and inflorescence
number. These QTLs showed additive effects and no epistatic
interaction. Likewise, six QTLs linked to fruit set in tomato
at high temperatures were identified (Grilli et al., 2007).
Based on evaluating recombinant inbred lines and introgression
lines developed from Solanum lycopersicum var. “MoneyMaker”
× S. pimpinellifolium across multi environments under high
temperature stress enabled in identification of 22 QTLs related
to reproductive traits (flower number fruit number and fruit
set proportion) on LG1, 2, 4, 6, 7, 10, and 11 explaining
phenotypic variation from 4 to 13% (Gonzalo et al., 2020). In
combination of phenotypic assessment of leaf cell membrane
stability by applying heat stress in F2 derivedmapping population
with QTL-seq approach in F2 derived mapping population
assisted in uncovering a total of seven QTLs qHT1. 1, qHT2. 1,
qHT2. 2, qHT5. 1, qHT6. 1, qHT7. 1, and qHT8. 1 conferring
heat tolerance in bottle gourd (Song et al., 2020). Likewise,
employing conventional QTL mapping and QTL-seq analysis
allowed in identifying a total of five major QTLs qHII-1-1,
qHII-1-2, qHII-1-3, qHII-2-1, and qCC-1-5 (qREC-1-3) related
to heat injury index under heat stress in tomato (Wen et al.,
2019). The authors performed the functional validation of the
underlying selected four potential candidate genes SlCathB2,
SlGST, SlUBC5, and SlARG1. To decipher genetic basis of heat
tolerance in cucumber, QTL analysis of mapping population
developed from “99281” (heat-tolerant) × “931” (heat-sensitive)
population phenotypically evaluated during summer 2018, 2019,
and 2020 allowed to identify one major QTL qHT1.1 on LG1
(Liu et al., 2021). There were 98 genes underlying this QTL. Of
these identified genes, expression ofCsa1G004990 candidate gene
was higher in “99281” than “931” genotype rendering it heat
tolerant. In order to shed light into the functional role of HSP20
contributing to heat tolerance, in Cucurbita moschata, genome
wide bioinformatic analysis enabled in unveiling 33HSP20 genes
across the genome (Hu et al., 2021). Functional validation of
CmoHSP20-7, 13, 18, 22, 26 and 32 genes indicated their possible
role in heat tolerance in Cucurbita moschata (Hu et al., 2021).

In cowpea, five QTLs governing pod set at high temperature,
namely Cht-1, Cht-2, Cht-3, Cht-4, and Cht-5, with CB 27 line
of cowpea donating alleles for four QTLs (Cht-1, Cht-2, Cht-
3, Cht-4) and IT82E-18 contributing alleles for Cht-5 (Lucas
et al., 2013). Combinations of any of the four QTLs with Cht-
5 positively correlated with heat tolerance in cowpea. Further,
the presence of all five QTLs in the same line had the strongest
positive correlation with heat tolerance (Lucas et al., 2013).
Recently, four QTLs were identified in chickpea that conferred
heat tolerance for filled pods (qfpod03_6), grain yield (qgy03_6),
total seed number (qvs05_6), and pod set (q% podset08_6)
using recombinant inbred lines produced from ICC 4567 (heat-
sensitive) × ICC 15614 (heat-tolerant) lines (Paul et al., 2018).
One QTL (qTBP5.2) was detected in lettuce, governing the tip-
burn resistance trait, therefore beneficial in breeding programs
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TABLE 5 | List of selected QTLs contributing to heat tolerance in vegetable crops.

Crop Mapping population Trait used Name of gene/

QTL

Type of

marker

Linkage

groups

Phenotypic

variation

References

Bottle gourd

(Lagenaria

siceraria)

L1 × L6 Relative electrical

conductivity

qHT1.1, qHT2.1,

qHT2.2, qHT5.1,

qHT6.1, qHT7.1, and

qHT8.1

SNP 1, 2, 5, 6, 7, 8 – Song et al., 2020

Cowpea

(Vigna

unguiculata)

CB27 x IT82E-18, RIL

141

– Cht−1, Cht−2, Cht−3,

Cht−4, Cht−5

SNP 2, 3, 6, 7, 10 11–18% Lucas et al., 2013

IT93K-503-1 x CB46,

RIL 113; IT84S-2246 x

TVu146, RIL 136

Seed coat browning Hbs-1, Hbs-2 and

Hbs-3

SNP 1, 3, 8 6–77% Pottorff et al.,

2014

Common bean

(Phaseolus

vulgaris)

IJR × AFR298, RIL Reproductive trait and

yield and yield traits

32 QTLs SNP 1, 2, 3, 4, 5, 8,

9, 10

7.8–36% Vargas et al., 2021

Chickpea

(Cicer arietinum)

DCP 92-3 ×

ICCV92944 RIL(184)

Phenological,

physiological and yield

related traits

77 QTLs SNP LG1–LG8 5.9–43.5% Jha et al., 2021

DCP 92-3 ×

ICCV92944F2(206)

Phenological and

physiological traits

2 QTLs SSR – Jha et al., 2019

ICC 4567 × ICC

15614, RILs(292)

Yield and yield traits 4 QTLs SNP CaLG05,

CaLG06

– Paul et al., 2018

GPF2 × ILWC292, RIL Phenological,

physiological and yield

related traits

28 + 23 QTLs SNP All LG groups

except LG8

5.7–13.7% Kushwah et al.,

2021

Chili

(Capsicum

annuum)

AVPP0702 × Kulai,

backcross

Reproductive and yield

trait

Hsp70 and sHsp gene SSR – – Usman et al., 2018

Tomato

(Lycopersicon

esculentum)

Nagcarlang ×

NCHS-1180 F2

Reproductive traits;

viz., pollen viability,

pollen number, style

length, anther length;

inflorescence number

and flowers per

inflorescence

qPV11, qPN7, qSP1,

qSP3, qAL1, qAL2,

qAL7, qSL1, qSL2,

qSL3, qFPI1 qIN1,

qIN8

SNP 1, 2, 3,7, 8, 11 10.5–38.7% Xu et al., 2017

MAGIC population Yield components,

phenology andfruit

quality

69 plasticity QTLs SNP Bineau et al., 2021

LA1698 × LA2093 Relative electrical

conductivity REC),

chlorophyll content

(CC) and maximum

photochemical

quantum

5 major QTLs qHII-1-1,

qHII-1-2,qHII-1-3,

qHII-2-1and qCC-1-5

(qREC-1-3)

SNP 1, 2 16.48% Wen et al., 2019

Solanum lycopersicum

var. “MoneyMaker” ×

S. pimpinellifolium

accession TO-937RIL

and IL

Reproductive traits viz.,

flower number, fruit

number per truss and

percentage of fruit set,

stigma exsertion

(SE),pollen viability (PV),

tip burn

22 QTLs SNP8K SNP

SOLCAP

Infinium chip

1, 2, 4, 6, 12 3.6–12.8% Gonzalo et al.,

2020

(Jenni et al., 2013). The information on genomes of crops is
expanding rapidly. The sequencing coupled with resequencing
will generate more information that will subsequently be used
to gather detailed knowledge of QTLs and genomic bases of
heat tolerance in crops. The closely-related crops share syntenic
relationships and possess similar genomic regions with each
other. In the forthcoming years, comparative genomic analysis
and advancements in knowledge of molecular biology might

allow us to transfer heat tolerant regions from one crop to
another, thereby expanding the repository of cold tolerance in
crop plants.

MARKER-ASSISTED SELECTION

As mentioned earlier, phenotype-based selection is prone to
environmental conditions sometimes leading to erroneous
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conclusions especially if trait is complex and conferred by
polygenes or QTLs. Under such circumstances, genotype-based
selection is more effective, precise and fast as compared to
phenotypic selection. Genotype-based selection rather than
phenotype-based selection is possible using markers linked
to gene of interest. Genotype-based selection utilizes DNA
markers that are linked tightly to the gene(s) of interest
(Collard and Mackill, 2007). For MAS, first step is to identify
markers linked to the gene or QTL using either mapping
populations or association mapping where a panel of genotypes
is used to identify liked markers. Subsequently, these markers
are used to ascertain transfer of the gene to the progeny
populations. Different types of markers, such as RFLP (restricted
fragment length polymorphism), AFLP (amplified fragment
length polymorphism), SSR (single sequence repeat), and SNPs
(single nucleotide polymorphisms), can be detected, and the
amount of variation in eachmarker can be determined. Using this
approach, gene mapping and identifying gene associations with
particular traits are useful for genetic crop improvement (Ruane
and Sonnino, 2007).

Paul et al. (2018) identified SNP markers linked to QTLs for
heat tolerance traits (50% flowering, podding behavior, total filled
pods, % pod set, total seed number, grain yield, biomass, harvest
index, 100-seed weight) in chickpea RILs (heat-tolerant ICC
15614×heat-sensitive ICC 4567). Composite interval mapping
analysis affirmed two genomic regions (CaLG05 and CaLG06)
with four QTLs (grain yield, total seed number, total filled pods,
% pod set). A GWAS used 16,877 SNPs to identify marker-
trait associations (MTA) in 135 diverse pea lines exposed to
>28◦C in the field to understand the genetic basis for heat
tolerance (Gali et al., 2019). The study identified 32 MTAs
and 48 candidate genes associated with various traits, including
chlorophyll concentration, photochemical reflectance index,
canopy temperature, reproductive stem length, internode length,
pod number, with the potential for developing heat-tolerant
cultivars (Tafesse et al., 2020). Lin et al. (2006) identified 14 RAPD
markers linked to heat tolerance traits (flower number, fruit
number, fruit set, yield) in tomato RILs derived from CL5915
(heat-tolerant) and L4422 (heat-sensitive) under HS. Developing
heat tolerant Capsicum annuum through transferring heat shock
protein encoding gene Hsp70 and sHsp from AVPP0702 into
Kulai an elite C. annuum cultivar by adopting marker assisted
back crossing approach is notable illustration of marker assisted
breeding for heat tolerance (Usman et al., 2018). Likewise, three
non-synonymous SNPs identified in the qHT2.1 major effect
QTL in bottle gourd (Song et al., 2020) and non-synonymous
SNP identified in the QHT_C09.2 QTL regions in broccoli
(Branham and Farnham, 2019) contributing to heat tolerance,
which could be potentially used as candidate markers for
screening heat tolerant bottle gourd and broccoli genotypes.

TRANSGENICS

Altering the genetic makeup of vegetable crops is a possible
solution for developing crops that can grow and reproduce well
under increasing temperatures. Plants have an inherent ability

to endure supra optimal temperatures (“basal thermotolerance”
or “acquired tolerance to increasing temperature”) (Grover et al.,
2013). The level of thermotolerance varies between plant species
depending on their genetic makeup and specific expression of
defense-related genes, however, levels of thermotolerance vary
in different plant species again due to differences in genetic
makeup of the plant species. Even within a species, genotypes
differ for reaction (tolerance or sensitive) to HS owing to varying
genetic makeup. Considerable number of genes/QTLs conferring
tolerance to HS has been identified in vegetable crops and these
genes/QTLs can be transferred from heat-tolerant genotypes to
heat-sensitive genotypes using transgenic approaches to develop
genetically modified heat tolerant crops. Genes expressed in heat-
tolerant crops can be transferred to heat-sensitive crops using
transgenic approaches to develop genetically modified heat-
tolerant crops. Candidate genes for development of transgenics
for heat tolerance are HSP, compatible osmolyte, and antioxidant
levels, and detoxifying pathways (Parmar et al., 2017).

Manipulating HSPs
Many vegetable crops have been manipulated for increased
expression of HSPs. For instance, in tomato, overexpression
of trehalose-6-phosphate synthase/phosphatase (TPSP) gene
derived from Escherichia coli increased the expression of HsfA1,
HsfA2, and HsfB1, which was linked to escalating Hsp17.8,
ER-sHsp and Mt-sHsp levels to impart heat tolerance (Lyu
et al., 2018). Similarly, overexpression of small heat shock
protein (CaHsp 25.9) improved thermotolerance in Capsicum
transgenic lines (R9 and B6) under HS, decreasing MDA content
and increasing proline and SOD content (Feng et al., 2019).
In transgenic potato lines, overexpression of the A2 HSc70
(Heat-Shock Cognate) allele-maintained tuber yield at elevated
temperature (Trapero-Mozos et al., 2018).

Manipulating Antioxidants
HS causes oxidative damage in plants; therefore, developing
transgenics with enhanced antioxidative mechanisms may
enhance thermotolerance in plants. Antioxidant mechanisms
were manipulated in pea by incorporating heat shock factor
gene (HsfA1d) from Arabidopsis thaliana. Under HS (42◦C),
transgenic pea plants had five-fold higher expression of HsfA1d
than wild pea, decreasing H2O2 accumulation, and higher SOD
and APX activities and proline content (Shah et al., 2020). Tang
et al. (2006) developed transgenic potato plants (SSA plants)
expressing Cu/Zn SOD and APX gene in chloroplasts under
the control of a SWPA2. The transgenic plants had less damage
induced by methyl viologen than non-transgenic plants. In the
same study, photosynthetic activity decreased by 29% in non-
transgenic plants but only 6% in transgenic plants under HS
(42◦C for 20 h). Overexpression of cytosolic APX (cAPX) in
transgenic tomato (Lycopersicon esculentum cv. Zhongshu No.
5) under HS (40◦C for 13 h) resulted in several-fold higher APX
activity than wild plants, reducing electrolyte leakage (24% in A9
line and 52% in A16 line) compared with wild plants. Similarly,
overexpression of cAPX in transgenic tomato increased tolerance
HS (Wang et al., 2006).
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Cross-Talk Between HSP and Redox
Mechanism
Equilibrium between ROS generation and ROS scavenging is
disturbed by the high temperature stress (Foyer and Noctor,
2005). One of the best strategies adopted by the plant cells is
the production of HSPs on exposure to high temperature (Wang
et al., 2004). HSPs positively affect thermotolerance by protecting
ROS scavenging system and actively resulting in lower ROS
concentration. HSPs also enable protein refolding, preventing
aggregation of non-native proteins and stabilize polypeptides
and membrane under stress conditions (Scarpeci et al., 2008).
It is unclear whether there is specific interaction between
HSPs and ROS scavenging machinery but ROS accumulation
is reduced via HSP induced ROS scavenging activity. Hence
the cross-talk between production of HSFs/HSPs and ROS
scavenging activity play important role in acclimation (Kang
et al., 2022). The communication between ROS and HSFs involve
Mitogen Activated Protein Kinase (MAPK). ROS dependent
phosphorylation can play vital role in HSF activation (Driedonks
et al., 2015). MAPK3 and MAPK6 are the key players which
are activated by H2O2 and further phosphorylate the HSFs, for
instance in tomato, heat induced MAPK transduces the heat
stress signal via HSFA3 (Link et al., 2002). Induction of heat
shock transcription factors HsfA2 and HsfA4 is reported to be
regulators of genes associated with ROS mitigation. HsfA4A is
the principle candidate to function as H2O2 sensor (Scarpeci
et al., 2008). At transcriptional level, HSPs are regulated by
HSFs that bind to the conserved regulatory element of heat
shock element (HSEs) and act as promoter for Hsp genes.
Under stress conditions ROS mainly H2O2 functions as signal
transduction molecule and cause HSF activation. ROS enhances
the dissociation of HSP and HSF complex and promote the HSF
trimerization and relocate the same to the nucleus leading to
activation of the expression of HSPs and other heat responsive
genes (Ul Haq et al., 2019) (Figure 4).

AGRONOMIC APPROACHES

By employing improved agronomic practices for different
crops has improved crop yields. These practices include better
soil, water, nutrient, weed, and pest management strategies,
selection of varieties, and appropriate planting times and planting
densities, and more and more (HanumanthaRao et al., 2016).
Agronomic practices control soil temperature by minimizing the
evaporation (Ferrante and Mariani, 2018) helping the cultivators
with sustained water use, proper fertilizer use, and improved land
maintenance, consequently improving crop quality and quantity.
In addition, agronomic practice also helps with increased
soil physical, chemical and microbial status. These help with
water and nutrient availability and plant uptake. Agronomic
practices for increasing vegetable crop yields that are efficient,
cost-effective, and easily adaptable for HS management are
described below.

Land preparation for planting involves tillage, seedbed
shaping, and mulching. These practices depend on the soil
type, physical and chemical properties. Sandy loam soils are

best for raising vegetables such as potato, cauliflower, lettuce,
cabbage, and tomato. Tillage includes breaking up/loosening the
soil by plow, favoring seed germination, and proper seedling
growth. Tillage also helps control weeds, aerate soil, and bury the
previous crop’s residues; the tillage method varies between crops
(Kladivko, 2001). However, the same benefits can be obtained
with no-till or minimum tillage practices that minimizes soil
disturbance and helps with building of soil organic carbon over
time. Mulching is a process of covering the soil with chopped
residues; it has many benefits, including reduced soil erosion and
water loss, which maintain soil temperature (Mulumba and Lal,
2008). Use of conservation agricultural practices with minimum
soil disturbance, grass mulch cover and crop rotations not only
significantly increased yield of green pepper but also decreased
irrigation water use and runoff, while increasing percolated water
in the root zone (Belay et al., 2020). Similarly, improved yields
of tomato, cucumber and bitter guard were observed under
conservation agriculture (Paudel et al., 2020). Conservation
agricultural practices in vegetable production systems has shown
to increase soil organic matter and nutrients (Belay et al., 2022).
Irrigation increases soil moisture, decreasing soil temperature
(by 2◦) compared to non-irrigated soil (Lobell and Bonfils,
2008). Water quality and supply varies according to soil type,
crop (warm- or cool-season), and weather conditions. Generally,
vegetable crops are irrigated at 4–6-day intervals during summer
and 14–15-day intervals during winter to reduce the high-
temperature effects. Many modern technologies for irrigation
are available that minimize water use, such as drip or trickle
irrigation and overhead micro-sprinklers.

Variety selection is a successful agronomic approach for
achieving high yields under high-temperature stress. Selection
characteristics include high yield, disease resistance, maturity
group, and grain quality (Pedersen, 2003). Suitable crop
genotypes need to be early maturing and high yielding to escape
heat by completing their life cycle early and thus perform better
under HS (Sekhon et al., 2010). Furthermore, shifting the sowing
time (early or late) is another strategy to avoid HS and avoid heat
induced yield reduction as has been reported in mungbean (up to
50%) and soybean where yield declined tremendously by delay in
the sowing date (Coventry et al., 1993;Miah et al., 2009). The goal
of selection of crop duration and time of planting is to avoid HS
during sensitive stages of reproductive development. In contrast,
late sowing has been used to screen large populations of chickpea
(Gaur et al., 2013), mungbean (Sharma et al., 2016), and lentil
(Sita et al., 2017) genotypes for heat tolerance, some of which
have been released (e.g., chickpea ICCV 92944) (Gaur et al.,
2013). Heat-tolerant varieties of some vegetable crops are listed in
Table 6. Hence, determining the ideal sowing time and selection
of heat tolerant varieties is crucial for growth, development, and
yield of crops.

Nutrients/Thermo-Protectants
HS can be alleviated by exogenous application of nutrients
or thermo-protectants as a seed pretreatment, foliar spray, or
by fertilizer application via broadcasting, pellet placement, or
band placement (Waraich et al., 2012; HanumanthaRao et al.,
2016). Macro-nutrients such as N, P, K, Ca, and Mg are
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FIGURE 4 | Cross talk between HSPs and redox reaction: -Heat stress imposes damages to plant like increased membrane fluidity, unfolding of proteins, ROS

production and dissociation of HSP70/90-HsfA1 complex. To endure HS, Plants activate various mechanisms to preserve their adaptation. First such mechanism is

the activation of cyclic nucleotide gated calcium (CNGC) channels that result in the movement of Ca2+ ions in to cytoplasm and bind with Calmodulin Protein (CaM3)

forming the Ca2+-CaM3 complex and help in the activation of Heat shock factors (HSFs). Second mechanism involves Phosphoinositol signaling pathway that also

lead to the influx of more Ca2+ in to the cytoplasm and merge with Ca2+-CaM3 pathway. Another mechanism during HS is the activation of ROS signaling network by

Respiratory Burst Oxidase Homolog D (RBOHD) that produce O2− which is converted in to H2O2 that is involved in the induction of HSFs activation. ROS like H2O2

also activate the HSFs complex through mitogen activated protein kinase (MAPK). On activation, HSFs move to the nucleus and activate HSE and HSP target genes.

HS also lead to the dissociation, of HSP70/90-HsfA1 complex; on dissociation HsfA1 undergoes trimerization that further activates the HSFs complex in the cytosol

and Heat shock element (HSE) in the nucleus. Their activation has many positive effects on the cellular metabolism like transcriptional regulation, activation of

antioxidant system and multi chaperone network (HSP60, HSP70, HSP90, HSP100, and sHSP) that may lower down the ROS levels in the cell and help in achieving

thermotolerance.

required by plants (>10mM) and help maintain structural and
functional integrity (Waraich et al., 2011). Nutrient deficiencies
alter the levels of tolerance to abiotic stresses. During HS, N
deficient plants were associated with increased lipid peroxidation,
while N supplemented plants tolerated photo-oxidative damage
(Kato et al., 2003). Likewise, K deficient plants had reduced
translocation of photo-assimilates to the sink organ, whereas K
application improved the translocation and utilization of photo-
assimilates, maintained cell turgidity, and upregulated enzymatic
activity under HS (Mengel et al., 2001; Cakmak, 2005), increasing
yield by 1.9-fold in Capsicum and 2.4-fold in tomato (Waraich
et al., 2012). Similarly, exogenous application of calcium (2 L/ha)
increased lettuce production under HS (Almeida et al., 2016).

Micronutrients such as B and Mn also provide heat
tolerance of plants by increasing antioxidant activity and

alleviating the damage induced by HS stress (Waraich et al.,
2011). Other elements such as Se increased enzymatic activity
and decreased membrane damage and ROS production in
soybean (Djanaguiraman et al., 2005). Seed pretreatment
and foliar application of thermoprotectant molecules such as
proline, glycinebetaine, salicylic acid, spermidine, putrescine,
GABA, ascorbic acid provides thermotolerance to crop plants
(HanumanthaRao et al., 2016). For instance, exogenous
application of proline mitigated HS effects in chickpea (Kaushal
et al., 2011). Ascorbic acid application to mungbean seedlings
under HS in a controlled environment improved seedling growth
(Kumar et al., 2011). In cucumber, a 1mM SA foliar spray
provided heat tolerance by increasing CAT activity and thus
reducing membrane damage and H2O2 levels (Shi et al., 2006).
Similarly, Kaur et al. (2009) reported that exogenous application
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TABLE 6 | Heat-tolerant varieties of some vegetable crops.

Crop Trait indicating tolerance Heat-tolerant varieties References

Broad bean

(Vicia faba)

Seed yield C.52/1/1/1 Abdelmula and Abuanja, 2007

Broccoli

(Brassica oleracea var. italica)

Gypsy and Packman Farnham and Bjorkman, 2011

Cabbage

(Brassica oleracea var. capitata)

Cell membrane thermostability Sousyu Chauhan and Senboku, 1996

ASVEG#1 Fu et al., 1993

Capsicum

(Capsicum annuum)

Mr. Lee No. 3 selex, CCA-119A,

Susan’s Joy, CCA-3288

Dahal et al., 2006

IIHR Sel.-3 Devi et al., 2017

Cauliflower

(Brassica oleracea var. botrytis)

IIHR316-1, IIHR371-1 and

PusaMeghna

Devi et al., 2017

Chickpea

(Cicer arietinum)

ICCV07110, ICCV92944 Kumar et al., 2013

Common bean

(Phaseolus vulgaris)

Chlorophyll fluorescence Ranit and Nerine RS Petkova et al., 2007

IIHR-19-1 Muralidharan et al., 2016

Cowpea

(Vigna unguiculata)

IT93K-452-1, IT98K-1111-1,

IT93K-693-2, IT97K-472-12,

IT97K-472-25, IT97K819-43 and

IT97K-499-38.

Timko and Singh, 2008

Lettuce

(Lactuca sativa)

S24 and S39 Han et al., 2013

Mungbean

(Vigna radiata)

Seed yield NFM-6-5 and NFM-12-14 Khattak et al., 2006

Biomass, number of flowers, pods

and seeds weight/plant

EC693357, EC693358, EC693369,

Harsha and ML1299

Sharma et al., 2016

Okra

(Abelmoschus esculentus)

Yield (fruit number) L2-11 and L4-48 Hayamanesh, 2018

Potato

(Solanum tuberosum)

Tuber yield and dry matter HT/92-621 and HT/92-802 Minhas et al., 2001

Pea

(Pisum sativum)

IIHR-1 and IIHR-8 Muralidharan et al., 2016

Soybean

(Glycine max)

Pollen traits 45A-46 Alsajri et al., 2019

Pollen traits DG 5630RR Salem et al., 2007

Spinach

(Spinacia oleracea)

Seed germination Ozarka II, Donkey, Marabu, and

Raccoon

Chitwood et al., 2016

Tomato

(Lycopersicon esculentum)

CL1131-0-043-0-6,

CL6058-0-3-10-2-2-2

PusaSadabahar, PusaSheetal,

Pusa Hybrid-1

Abdul-Baki, 1991*

Devi et al., 2017

of SA (10 and 20µM) to heat-stressed brassica seedlings (40–
55◦C) improved CAT and POX activities. Pretreatment of SA to
mungbean seedlings decreased lipid peroxidation and enhanced
antioxidant activity, improving membrane stability (Saleh et al.,
2007). In chickpea, a 100µM SA foliar spray to heat-stressed
seedlings (46◦C) increased proline content (Chakraborty and
Tongden, 2005). Thus, exogenous SA application mitigates
the harmful impacts of heat-induced damage by strengthening
antioxidative pathways. Foliar spray of Se (8µM) to cucumber
plants exposed to 40/30◦C during flower initiation (35–75 DAS)
decreased oxidative damage by stabilizing the antioxidative
mechanism and increasing ROS scavenging (Balal et al., 2016).

Microorganisms Imparting
Thermotolerance
In addition to other factors, plant-associated microorganisms,
including plant-growth-promoting rhizobacteria, endophytic
bacteria, and symbiotic fungi, play a significant role in
imparting thermotolerance in plants (Grover et al., 2011). Many
agriculturally important microbes have been discovered that
colonize and promote plant growth and aid in nutrient and
disease control through various direct and indirect methods
(Singh et al., 2016). The interaction betweenmicroorganisms and
host plants imparting stress tolerance is a complex process and
polygenic in nature. Ali et al. (2009) discovered a thermotolerant
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FIGURE 5 | Heat stress has various negative impacts on the plant like reducing vegetative and reproductive growth, interfering with the physiological and cellular

functions. To combat such impacts, plant activates multiple responses and heat avoidance mechanisms which can be used to identify heat resilient vegetable crops.

Different approaches categorized in this article for this purpose are physiological based, omics based, molecular breeding based and agronomic based. Such possible

options will pave the way for improving adaptation and mitigation of heat stress in vegetable crops.

strain of Pseudomonas sp. AMK-P6 in sorghum that elicits
HSPs synthesis under high-temperature stress, and improves
biochemical activities by inducing the synthesis of osmolytes such
as proline, sugars, amino acids, and chlorophyll. Pseudomonas
putida NBRI0987, a thermotolerant strain (<40◦C) was isolated
from the chickpea rhizosphere (Srivastava et al., 2008). A
recent study on different rhizobacterial strains of pigeon pea
at high temperature (30, 40, 50◦C) showed that S1p1 and
S12p6 were the most promising strains for plant growth
and development, stimulating auxin production, flavonoid
production, and siderophore formation (Modi and Khanna,
2018). It would be worth evaluating the effectiveness of these
microbes in vegetable crops for induction of thermotolerance.

Protected Cultivation
Growing vegetables in protected environments on small-scale
farms using modern technologies has gained considerable
attention for their high yields and quality and regular
vegetable supply in the off-season (Sabir and Singh, 2013).
Protected cultivation involves manipulating environmental
factors such as temperature, humidity, light, water, and soil by
designing suitable structures and following appropriate practices

(Wittwer and Castilla, 1995). The main practices for protected
cultivation are row tunnels, polytunnels, and mulching, which
are more beneficial than open-field cultivation with less demand
for fertilizers, pesticides, and water (Choudhary et al., 2013). In
tomato, using a fogging system for 20min/h (between 10 a.m. and
4 p.m.) in a hot shade house (>37◦C) obtained high fruit yields
with fewer physiological disorders (Ro et al., 2021). A similar
fogging system improved the antioxidant defense responses in
tomato plants (Leyva et al., 2013). Related approaches have been
used to cultivate cucumber, capsicum, and lettuce with high
yields (Sabir and Singh, 2013).

CONCLUSIONS

Vegetables are a distinct collection of plant-based foods that
vary in nutritional diversity and form an important part of
healthy diets. They also have great potential for boosting human
health. Exposure to high temperatures or HS can directly
or indirectly influence the production and quality of fresh
vegetables. Several heat-induced morphological damages, such as
poor vegetative growth, leaf tip burning, rib discoloration in leafy
vegetables, sun burned fruits, decreased fruit size; pod abortion,
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and unfilled pods are common, which can render vegetable
cultivation unprofitable. Key physiological and biochemical
effects associated with crop failure include membrane damage,
photosynthetic inhibition, oxidative stress, and reproductive
tissue damage. Reproductive stage has extensively been studied
and found to be more sensitive to HS as it directly affects yields
by reducing processes like pollen germination, pollen load, pollen
tube growth, stigma receptivity, ovule fertility, and seed filling,
resulting in poorer yields. Hence, sound and robust adaptation
strategies are needed to mitigate the adverse impacts of HS to
ensure the productivity and quality of vegetable crops.

Most important strategy to manage HS is deployment of
heat tolerant cultivars (Figure 5). Physiological traits, such as
stay-green trait, canopy temperature depression, cell membrane
thermostability, chlorophyll fluorescence, relative water
content, and stomatal conductance, are especially important
in developing high-yielding heat-tolerant varieties/cultivars.
Molecular approaches like omics, molecular breeding and
transgenics have the potential to enhancing heat tolerance
either by transferring heat tolerant genes/QTLs to elite cultivars
with the help of molecular markers or elucidating mechanisms
of tolerance leading to identification of heat tolerance genes
and transferring those across genera or families via genetic
modifications. Besides these approaches, simple agronomic
methods are also important for mitigating HS effects at the
grassroots level. Therefore, developing heat-tolerant plant types

using physiological, molecular, and breeding-based techniques
is essential for sustaining vegetable production systems and
human health. Further, these approaches will offer insight
into the physiological and molecular mechanisms that govern
thermotolerance and pave the way for engineering ‘designer’
vegetable crops for better health and nutritional security.
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Abstract

Plant genetic variations provide opportunity to develop new and improved
cultivars with desired characteristics, hence gaining major attention from the
scientists and breeders all over the world. Harnessing genetic variability is the
key factor in the adaptation of plants to ever-rising temperature. Nowadays, such
characteristic traits among the population can be used to develop various heat-
resilient crop varieties and have a profound effect on restoring the balance
between climate change and agriculture. Genetic variations in physiological and
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molecular traits proved to be the major components for breeding programs to
augment the gene pool. With genetic variations, it is possible to identify the
phenotypic variations governed either by a single gene or by many genes that will
be helpful for mapping associated quantitative trait loci. Genetic variations can
also be traced by examining various physiological traits of a crop plant like
growth traits (biomass, plant height, and root growth), leaf traits (stomatal
conductance, chlorophyll content, chlorophyll fluorescence, photosynthetic rate,
membrane stability, sucrose content, and canopy temperature depression), and
floral traits (mainly associated with male gametophyte). Yield traits can also
display enormous variation, making it highly useful/reliable for screening
purposes. Further, genetic variation at the biochemical level can be assessed by
measuring the expression of enzymes (related to oxidative stress and
antioxidants) and metabolites (both primary and secondary). Evaluating how
genetic variation influences phenotype is the ultimate objective of genetics, and
using omics approaches can improve the understanding of heat tolerance-
governing mechanisms. Further, collecting molecular data at different levels of
plant growth and development will help to accelerate our understanding of the
mechanisms linking genotype to phenotype.

Keywords

Genetic variations · Physiological and molecular traits · Metabolites · Phenotype ·
Heat tolerance · Omics approaches

2.1 Introduction

The Earth’s rising average surface temperature, possibly due to global warming,
poses a significant threat to the production potential of plants (Bita and Gerats 2013).
Temperature is one of the main factors affecting plant phenology and plays a
significant role in plant species distribution around the globe (Li et al. 2018). All
plant species have a threshold temperature for growth to reach their yield potential;
temperatures beyond the threshold are stressful at all plant growth stages, affecting
overall performance (Wahid et al. 2007). Heat stress is supraoptimal temperatures
that cause irreversible damage to plants (Hasanuzzaman et al. 2013). The impact of
heat stress depends on species, specific growth stage, and intensity and duration of
the stress (Farooq et al. 2017; Li et al. 2018).

Heat stress affects all stages of plant growth, viz., (1) seed germination (decreases
seed germination rate and seedling root and shoot lengths), (2) vegetative growth
(decreases plant height, biomass production, and root growth), (3) leaf structure and
function (damages membrane structure, increases canopy temperature, decreases
stomatal conductance, chlorophyll fluorescence, photosynthetic rate, and sucrose
metabolism), (4) reproductive traits (mainly male gametophyte), (5) cellular homeo-
stasis (elevated reactive oxygen species production), and (6) yield (reduced seed
number, seed weight, and seed-filling rate). The reproductive stage is much more
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Fig. 2.1 Impacts, defense mechanisms against heat stress, and possible screening traits used for
selecting temperature-resilient crops. High temperature adversely affects plant growth, causes tissue
damage, and impairs vital processes such as photosynthesis, respiration, and reproduction. The
injuries caused by heat stress lead to oxidative stress due to the production of reactive oxygen
species, reducing crop yields. Plants implement various mechanisms to cope with heat stress,
including antioxidant and metabolite production, accumulation and adjustment of compatible
solutes, and most importantly chaperone (heat-stress proteins, HSPs) signaling and transcriptional
activation. These mechanisms, regulated at the molecular level, enable plants to thrive under heat
stress. Various growth traits [e.g., plant biomass, plant height, root system architecture (RSA)], leaf
traits [e.g., cell membrane thermostability (CMT), canopy temperature depression (CTD), stay-
green trait (SGT), stomatal conductance, chlorophyll fluorescence, photosynthetic rate], reproduc-
tive traits (e.g., pollen viability, pollen germination), biochemical traits [e.g., reactive oxygen
species (ROS) detoxification, various metabolites, HSP levels], and yield traits have been explored
as heat-tolerance indicators for screening and breeding for heat tolerance

sensitive to heat stress than the vegetative stages, leading to lower seed weights and
thus yield (Farooq et al. 2017). Plants are sessile organisms that can develop various
adaptive mechanisms to endure heat waves, such as antioxidant production, synthe-
sis of low-molecular-weight secondary metabolites, increasing heat-shock proteins
(HSPs), and upregulating various transcription factors (Fig. 2.1). These endurance
mechanisms vary between crop species, growth stage, and growth traits (Bita and
Gerats 2013; Prasad et al. 2017).
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2.2 Heat Stress and Legumes

Food legumes are an indispensable part of the human diet in developing countries.
The major food legumes consumed worldwide are pea (Pisum sativum L.), chickpea
(Cicer arietinum L.), common bean (Phaseolus vulgaris L.), lentil (Lens culinaris
Medik.), mung bean/green gram (Vigna radiata L.), urdbean/black gram (Vigna
mungo L.), and cowpea [Vigna unguiculata (L.) Walp.], and the major oilseed
legumes include peanut (Arachis hypogaea L.) and soybean (Glycine max L.)
(Maphosa and Jideani 2017). Due to their high nutritional value, legumes are ranked
second after cereals. They are rich in protein (20–45%), carbohydrates (60%),
dietary fiber (5–37%), and mineral matter (calcium, iron, potassium, phosphorus,
copper, and zinc) with no cholesterol and low fat (Iqbal et al. 2006). Environmental
factors, mainly rising temperatures, are major constraints on the growth and yield of
food legumes. Heat stress adversely affects physiological and reproductive stages,
resulting in poor seed yield and quality (Sita et al. 2017). Table 2.1 shows the
threshold temperatures for commonly grown legumes in different regions of the
world. Various studies have reported the impact of heat stress on seed germination,
including poor emergence, germination percentage and radicle and plumule growth,
and abnormal seedling vigor. For instance, chickpea germinated well at temperatures
from 15 to 35 °C but poorly at temperatures above 40 °C (Kumari et al. 2018).
Temperature beyond the threshold range showed lethal effects on the chickpea
seedlings (Kumari et al. 2018). Similarly, a 50 °C heat treatment for 30 min signifi-
cantly reduced seed germination, seed vigor, and seedling growth of dry black gram
(Piramila et al. 2012).

Heat stress affects early vegetative growth, decreasing biomass accumulation and
root growth and stunting plant height (Huang and Xu 2008; Kaushal et al. 2013).

Table 2.1 Threshold temperatures of few selective food legumes

Threshold temperature (°
C)

Pulses

Chickpea (Cicer arietinum L.) 16–27 Devasirvatham et al.
(2013)

Common bean (Phaseolus vulgaris
L.)

27–30 Rainey and Griffiths
(2005)

Cowpea (Vigna unguiculata L.) 18–28 Craufurd et al. (1998)

Faba bean (Vicia faba L.) 22–23 Lavania et al. (2015)

Lentil (Lens culinaris Medik.) 18–30 Sita et al. (2017)

Mung bean (Vigna radiata L.) 28–30 Kaur et al. (2015)

Pea (Pisum sativum L.) 18–24 Jiang et al. (2015)

Urdbean/black gram (Vigna mungo
L.)

30–35 Anitha et al. (2016)

Oilseeds

Peanut (Arachis hypogaea L.) 22–28 Prasad et al. (1999)

Soybean (Glycine max L.) 20–26 Nahar et al. (2016)
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Various studies have reported that heat stress inhibits physiological processes and
cellular response activation, including decreased cellular membrane thermostability
(Xu et al. 2006). Heat stress dramatically affects the photosynthetic process by
disrupting chloroplast structures (thylakoid leakiness and grana stacking) and dam-
aging the D1 protein of PSII due to the accumulation of reactive oxygen species
(ROS) (Allakhverdiev et al. 2008; Sharkey 2005). Deactivation of the RuBisCo
enzyme even at moderate–high temperatures further hampers photosynthesis
(Allakhverdiev et al. 2008).

High temperatures significantly affect the reproductive phase, as reported in
various food legumes, including mung bean (Kaur et al. 2015), chickpea (Kaushal
et al. 2013), lentil (Bhandari et al. 2016; Sita et al. 2017), and peanut (Prasad et al.
1999). The main reproductive events affected by heat stress are male gametophyte
development (meiosis in microspore mother cell, tapetum development in viable
pollen, reduced pollen germination, reduced pollen tube growth), female gameto-
phyte development (meiosis in the megaspore mother cell, tapetum development in
viable eggs, altered stigmatic and style positions, reduced stigma receptivity), and
fertilization (double fertilization and triple fusion) (Farooq et al. 2017; Prasad et al.
2017). Heat stress accelerates seed filling, inhibiting the accumulation of reserves in
developing seeds, resulting in poor-quality seeds (Calderini et al. 2006) and reduced
seed yields in food legumes such as chickpea (Awasthi et al. 2014) and lentil (Sehgal
et al. 2018).

Understanding the impact of heat stress and the related mechanisms will help
improve crop genotypes under heat stress. Therefore, identifying traits through
extensive screening experiments related to heat tolerance is important for selecting
better performing heat-tolerant genotypes of food legumes. This chapter identifies
various traits in genotypes of various food legumes with different heat sensitivity/
tolerance levels (Fig. 2.1) and offers insight into the overall traits and mechanisms
used to select heat-tolerant genotypes.

2.3 Growth-Based Studies

High temperature adversely affects the growth and development of various legumes,
restricting the growth cycle from emergence to seed set (Sehgal et al. 2018). Seed
germination and seedling establishment, including root and shoot lengths and
seedling vigor, are highly sensitive to high temperature. For instance, mung bean
seedlings exposed to 45/35 °C had reduced growth (Kumar et al. 2011), and
chickpea seedlings exposed to 40 °C for 96 h died (Kumari et al. 2018). Heat stress
accelerates early vegetative growth, decreasing leaf number and dry matter accumu-
lation (Tahir et al. 2008). Even moderate heat stress leads to rapid growth and
development, resulting in shorter crop duration and less carbon assimilation over
the plant’s life cycle (Driedonks et al. 2016; Hatfield and Prueger 2015). Many
studies have shown that disturbances in fundamental physiological processes, such
as photosynthesis, respiration, water status, membrane stability, primary and sec-
ondary metabolites, and ROS generation, due to metabolic disparity resulted in
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fewer and malformed plant parts (Wahid et al. 2007). Reduced vegetative growth
also results from various anatomical and structural changes in cellular organelles,
leading to necrosis, chlorosis, sunburn, senescence, and abscission of leaves, twigs,
branches, and stems. Further, heat stress negatively affects plant architecture,
including branching pattern, leaf area, internode elongation, and leaf/branch angles
(Sabagh et al. 2020). The above studies indicate that several processes and molecules
are involved in heat stress, reducing plant growth. Many studies have reported
reduced vegetative growth in legumes, suggesting an interaction between potential
yield and vegetative growth traits, for instance, in chickpea (Awasthi et al. 2014),
common bean (Soltani et al. 2019; Yoldas and Esiyok 2009), faba bean (Siddiqui
et al. 2015), lentil (Sita et al. 2017), mung bean (Kumar et al. 2011; Sharma et al.
2016), and soybean (Sabagh et al. 2020). Thus, the impact of heat stress on plant
growth can be evaluated by assessing traits such as plant height, biomass, and root
system architecture. Studies on contrasting genotypes revealed genetic variation in
these traits in response to heat stress, which will help identify the mechanisms
associated with heat tolerance in legumes.

2.3.1 Biomass

Biomass is an indicator of dry matter accumulation during plant growth, which is
adversely affected by heat stress in various legumes (Sabagh et al. 2020). Several
studies have revealed genetic variations in biomass accumulation in legumes under
high temperatures. Thus, chickpea under heat stress (>32/20 °C) in a greenhouse
had 22–30% less biomass than control plants (Kaushal et al. 2013). High tempera-
ture decreased biomass more in heat-sensitive chickpea genotypes (ICC5912,
ICC10685) than heat-tolerant genotypes (ICC15614 and ICCV92944) (Kaushal
et al. 2013). In another greenhouse study, heat stress (38/35 °C) decreased alfalfa
(Medicago sativa) biomass, more so in heat-sensitive Wl712 than heat-tolerant
Bara310SC, compared to the control (25 °C) (Wassie et al. 2019). In the field,
heat stress (>32/20 °C) significantly decreased lentil biomass (Sita et al. 2017).
Genotypes IG3263, IG2507, IG3297, IG3312, IGG3327, IG3330, IG3546, IG3745,
IG4258, and FLIP2009 retained the most biomass and were considered heat tolerant,
while genotypes IG2519, IG2802, IG2506, IG2849, IG2821, IG2878, IG3326,
IG3290, IG3973, IG3964, IG4242, DPL15, DP315, IG4221, and IG3568 were
considered heat sensitive. High temperature (>40/28 °C) in the field significantly
reduced (76%) plant biomass in 45 mung bean accessions from the World Vegetable
Center, compared to control conditions (34/16 °C)—genotypes EC693357,
EC693358, EC693369, Harsha, and ML 1299 retained the most biomass under
heat stress and were considered heat tolerant, while genotypes EC693363,
EC693361, KPS1, EC693370, and IPM02-3 retained the least biomass and were
considered heat sensitive (Sharma et al. 2016).
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2.3.2 Plant Height

Heat stress suppresses the overall vegetative growth of plants by affecting various
growth-related mechanisms involving hormones and enzymes (Siddiqui et al. 2015).
Plant height at different growth stages is a vital indicator of plant growth under stress
situations and has been correlated with heat stress sensitivity (Prasad et al. 2008). A
field study was undertaken to screen 12 Kabuli chickpea lines through delayed
sowing for heat exposure (39.4 °C) (Mishra and Babbar 2014). Four chickpea
lines—KAK2, JGK2, ICCV07311, and ICCV06301—were selected as heat tolerant
based on plant height and other yield traits, with positive correlations between
phenological traits (days to flowering, days to 50% flowering, maturity days, number
of secondary branches, plant height) and yield traits (Mishra and Babbar 2014).
Soybean genotypes (64) exposed to heat stress (40/32 °C; seedling stage for 20 days)
varied in plant height—IREANE, CZ4898RY, CZ5242LL, CZ5375, ELLIS,
5N393R2, CZ4181, and 45A46 were categorized as heat tolerant, and 5115LL,
S47-K5, S45-W9, 483C, 38R10, R01-416F, JTN-5110, S48RS53, and
DG4825RR2/STS as heat sensitive, with the remainder categorized as moderately
heat tolerant or moderately heat sensitive (Alsajri et al. 2019). Similarly, high
temperature imposed on four common bean genotypes (Gima, Volare, Amboto,
Nassan) by delaying normal sowing (late-sown) significantly reduced yields, relative
to normal-sown plants, due to a shorter vegetative cycle, and genotypes Gima and
Volare maintained taller plants than Amboto and Nassan (Yoldas and Esiyok 2009).
In a greenhouse study, ten faba bean genotypes raised under high temperatures
(HT1: 31 °C and HT2: 37 °C) had markedly reduced plant height compared to the
control plants. Genotype C5 produced the tallest plants (heat tolerant), while Espan
produced the shortest plants (heat sensitive) (Siddiqui et al. 2015).

2.3.3 Root System Architecture

Root system architecture (RSA) is the structure and spatial and temporal configura-
tion of plant root systems (de Dorlodot et al. 2007). On a macroscale, RSA can
determine the organization of the primary and secondary roots (Smith and De Smet
2012). On a microscale, RSA can determine root microstructures, such as fine root
hairs and root tips and their interactions with soil and soil microorganisms responsi-
ble for water and mineral uptake (Wu et al. 2018). The spatial and temporal
distribution of roots determines the crop’s ability to exploit heterogeneously
distributed soil resources (Brussaard et al. 2007). Heat stress directly affects plant
roots by restricting carbohydrate transport from shoots to roots (Huang and Xu
2008). A comprehensive understanding of RSA helps us understand the effect of
environmental conditions and management practices on crops, decreasing the devi-
ation between potential and actual average yields (Garnett et al. 2009; Judd et al.
2015; Ryan et al. 2016). RSA plays an important role in plant–soil–microbe
interactions and resolving the cross talk with beneficial soil microbes in the rhizo-
sphere (Ryan et al. 2016).
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Root architecture adapts to fluctuating environments. Therefore, we can improve
crop performance by increasing root traits, such as root development allocation, and
morphological, anatomical, or developmental plasticity (Sultan 2000). Thus, under-
standing the genetic and molecular mechanisms determining root phenotypic plas-
ticity is necessary for effective selection and crop breeding efforts. Direct
relationships between individual root architectural plasticity and yield have been
reported across changing environments in various species (Niones et al. 2013;
Sadras 2009). Root branching is important for improving soil anchorage and root
surface area, enabling plants to reach more distant water reserves. In plants, high-
and low-temperature stress generally reduces primary root length, lateral root density
(number of lateral roots per unit primary root length), and emergence angle of lateral
roots from the primary root, but does not affect the average lateral root length
(McMichael and Quisenberry 1993; Nagel et al. 2009). Heat stress affects nutrient
uptake due to a decline in root biomass and root hair surface area. In mung bean,
high temperatures of 40/30 °C and 45/35 °C inhibited root growth by 13% and 23%,
respectively (Kumar et al. 2011).

Root growth has lower optimal growth temperatures and is more sensitive to high
temperatures than shoot growth (Huang and Gao 2000; Xu and Huang 2000). Some
plant roots synthesize heat-shock proteins (HSPs) by ameliorating their working
efficiency (Nieto-Sotelo et al. 2002). Root phenotyping of 577 common bean
genotypes in variable heat environments revealed significant relationships between
seed yield and seedling basal root number, seedling adventitious root abundance,
and seedling taproot length (Strock et al. 2019). The Mesoamerican genotypes
yielded higher than the Andean genotypes under heat stress (Strock et al. 2019). In
another study, five chickpea genotypes were assessed for thermotolerance at 30, 35,
and 40 °C using root length and root branching as criteria, which identified CSJD
884 and RSG 895 as heat tolerant and C 235 as heat sensitive (Kumari et al. 2018).
The 40 °C treatment for 96 h negatively affected root branching in chickpea (Kumari
et al. 2018).

Similarly, screening 48 lentil genotypes in a growth chamber at 34 °C using root
length as one of the selection criteria identified Ranjan, Moitree, 14-4-1, IC 201710,
and IC 208329 as heat tolerant (Choudhury et al. 2012). In another lentil study, heat-
tolerant genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009) had 1.8–22-
fold more root nodulation than heat-sensitive genotypes (IG2821, IG2849, IG4242,
IG3973, IG3964) under heat stress (>32/20 °C) (Sita et al. 2017).

2.4 Yield-Based Traits

Heat stress negatively impacts reproductive efficiencies and seed development
stages, reducing crop yield and quality (Sehgal et al. 2018). Various studies have
shown that the relative performance of plants in terms of yield under heat stress is
useful for selecting genotypes for crop improvement programs (detailed below).
Heat stress severely affects seed development and seed filling in many crop species,
resulting in abnormal and shriveled seeds (Egli 1998). The direct effect of heat stress
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on the sink potential of maturing seeds (Commuri and Jones 1999) disrupts cell
division in the endosperm, decreases the number of starch granules, and reduces
starch accumulation. Many screening studies under heat stress have included yield
traits, such as seed number, seed weight, seed-filling rate, and duration (Farooq et al.
2017).

2.4.1 Seed Number

Heat stress disrupts pollination and fertilization events that directly curtail seed
number. For instance, high temperature (45/32 °C) reduced seed number in mung
bean genotypes relative to the control (34/16 °C), more so in heat-sensitive
genotypes (EC693363, EC693361, KPS1, EC693370, and IPM02-3) than heat-
tolerant genotypes (EC693357, EC693358, EC693369, Harsha, and ML 1299)
(Sharma et al. 2016). Similarly, in a greenhouse study, the 33/30 °C treatment
reduced pod number and seed number per pod the most in 24 common bean
genotypes exposed to varying temperatures (24/21 °C, 27/24 °C, 30/27 °C,
33/30 °C), more so in heat-sensitive genotypes (-66%; A55, Labrador, Majestic,
IJR) than heat-tolerant genotypes (-31%; Brio, Carson, G122, HB1880, HT38,
Venture) (Rainey and Griffiths 2005). In another study, heat stress (36/27 °C)
reduced seed number per pod in all but two cowpea lines (heat-tolerant B89-600
and TN88-63) evaluated for heat tolerance in a greenhouse (Ehlers and Hall 1998).
In another greenhouse study, high temperature (38 °C) during the reproductive stage
of 211 pea genotypes revealed HUDP-25, IPF-400, HFP-4, and DDR-56 as heat
tolerant and VL-40, KPMR-615, DDR-61, and KPMR-557 as heat susceptible based
on yield parameters; for example, heat-tolerant genotypes had more seeds per plant
(35–197) than heat-sensitive genotypes (1–58) (Mohapatra et al. 2020).

2.4.2 Seed Weight

Seed weight is one of the major traits governing crop yield and is thus used as a
screening trait in many studies to select heat-tolerant varieties. For example, chick-
pea exposed to different temperatures (35/25 °C, 40/30 °C, and 45/35 °C) in a
growth chamber decreased seed weight at 40/30 °C by 37–45% in sensitive
genotypes (ICC14183, ICC5912) relative to tolerant genotypes (ICCV07110,
ICCV92944). However, higher temperature (45/35 °C) had a more severe effect,
with fewer seeds in tolerant genotypes and no pod set in sensitive genotypes (Kumar
et al. 2013). Similar findings were recorded in mung bean when high temperatures
(45/32 °C) coincided with reproductive growth; seed weights declined by 48.3% in
the sensitive genotype (SML668) and 35.1% in the tolerant genotype (SML832),
relative to the control (Kaur et al. 2015). Likewise, seed weight of lentil plants
exposed to high temperature (>32/20 °C) in the field declined, relative to control
plants (Bhandari et al. 2016), more so in the heat-sensitive genotypes (-50%; LL699
and LL1122) than the heat-tolerant genotype (-33%; LL931).

227



36 P. Devi et al.

In common bean, a high temperature of 33/30 °C was adequate for selecting heat-
tolerant (Carson, G122, Brio, HB1880, HT38, Venture) and heat-sensitive
genotypes (Labrador, A55, Majestic, IJR), based on seed weight trait in the field;
seed weights decreased by 88% in heat-sensitive genotypes compared with 35% in
heat-tolerant genotypes (Rainey and Griffiths 2005). Different location-based yield
trials—Coachella (USA; 41/25 °C) and Riverside (USA; 36/17 °C)—were used to
screen three groups of cowpea genotypes differing in heat sensitivity (Ismail and
Hall 1999). Yield parameters, mainly seed weight, and seeds/pod, decreased signifi-
cantly as the temperature increased. Tolerant genotypes (H36, H8-9, DLS99)
retained more seed weight (193 mg/seed) at higher temperature (41/25 °C) than
heat-sensitive genotypes (168 mg/seed; CB5, CB3, DLS127). Mohapatra et al.
(2020) reported that heat stress reduced 25-seed weight in pea in heat-susceptible
genotypes (VL-40, KPMR-615, DDR-61, KPMR-557) to a mean value of 4.13 g,
while heat-tolerant genotypes (HUDP-25, IPF-400, HFP-4, DDR-56) had higher
seed weights (4.60 g).

Heat stress accelerates the seed-filling rate but decreases the seed-filling duration.
In cowpea, increasing the temperature from 15.5 to 26.6 °C increased the seed-filling
duration by 14–21 days (Nielsen and Hall 1985). During seed development, heat
stress (>32/20 °C) increased the seed-filling rate in six chickpea genotypes relative
to the optimum temperature, and shortened the seed-filling duration, more so in heat-
sensitive (ICC4567) than heat-tolerant (ICC1356, ICC15614) genotypes (Awasthi
et al. 2014). Thus, reduced seed weight due to heat stress could be related to a decline
in seed-filling processes (Sehgal et al. 2017).

2.5 Pollen Grain Traits

Pollen grains are sensitive to extreme temperatures from early pollen development to
fertilization, including meiosis I and meiosis II of the microspore mother cell, early
dissolution of the tapetum layer, anther dehiscence, pollen shedding, pollen viability,
pollen germination, pollen tube growth, and fertilization (Barnabas et al. 2008;
Hedhly 2011; Kumar et al. 2013). Observations on heat stress-induced arrest of
male gametophyte development revealed the importance of starch accumulation
during pollen development because it gives rise to carbohydrates at maturity (Raja
et al. 2019). Heat stress prevents starch accumulation during pollen development,
which possibly contributes to reduced pollen viability (Pressman et al. 2002). High
temperature during anthesis leads to yield losses due to poor pollen traits such as
pollen viability, pollen production, and pollen tube length in crop plants, including
chickpea (Devasirvatham et al. 2012; Kaushal et al. 2013), common bean (Suzuki
et al. 2001), mung bean (Kaur et al. 2015), lentil (Kumar et al. 2016; Sita et al. 2017),
and soybean (Salem et al. 2007). Heat-tolerant and heat-sensitive common bean
genotypes were identified based on pollen stainability—exposure to high tempera-
ture (>28 °C) for 8–11 days before anthesis decreased pollen stainability and
increased flower abortion, reducing pod yield (Suzuki et al. 2001). Heat-sensitive
genotypes (Kentucky Wonder, Oregon, and Okinawa Local) had <20% pollen
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stainability, while the heat-tolerant genotype (Haibushi) had 60% pollen stainability
under heat-stress conditions. Heat stress (43/30 °C and 45/32 °C) in mung bean
adversely affected reproductive components, reducing pollen viability, pollen ger-
mination, and pollen tube length (Kaur et al. 2015), compared to the controls (>40/
25 °C). Moreover, high temperature during microsporogenesis reduced pollen num-
ber and produced shriveled pollen grains, more so in the heat-sensitive genotype
than the heat-tolerant genotype. Another field study exposed 45 mung bean
genotypes to high temperature (42 °C) during the flowering stage (Sharma et al.
2016).

An in vitro pollen study revealed that heat-tolerant mung bean genotypes
(C693357, EC693358, EC693369, Harsha, ML1299) had better pollen viability
and pollen germination than sensitive genotypes (KPS1, EC693361, EC693363,
EC693370, IPM02-3) (Sharma et al. 2016). Other pollen traits (pollen germination
and pollen load) were used to screen chickpea, identifying heat-tolerant (ICC15614,
ICCV92944) and -sensitive (ICC10685, ICC5912) genotypes (Kaushal et al. 2013).
Another study identified tolerant and sensitive chickpea genotypes using pollen traits
(Devasirvatham et al. 2013) under heat stress (≥35 °C); pollen grains were more
sensitive to high temperature than stigmas, with genotype ICC1205 identified as heat
tolerant and ICC4567 as heat sensitive. Kumar et al. (2016) screened 334 lentil
accessions for heat tolerance under field conditions (>35/25 °C) and selected heat-
tolerant genotypes (FLIP2009-55L, IG2507, and IG4258) based on pollen traits. Sita
et al. (2017) revealed that high temperature (>32/20 °C) in the field reduced pollen
viability to a greater extent than control (<32/20 °C), with higher pollen germination
in heat-tolerant genotypes (48–50%; IG2507, IG3263, IG3745, IG4258, and
FLIP2009) than heat-sensitive genotypes (28–33%).

Sixteen pea accessions were screened for heat tolerance by exposing plants to 45 °
C for 2 h; the Ran1 line was selected as heat tolerant and R–Af-1, C–Af-2, and Cs–
Af–3 as heat sensitive based on pollen traits (pollen viability, pollen germination,
pollen tube growth) (Petkova et al. 2009). In another study, two pea cultivars were
tested for their differential sensitivity to high temperature (27/18 °C, 30/18 °C,
33/18 °C, and 36/18 °C) based on in vitro pollen germination, pollen tube length,
pollen surface morphology, and pollen wall structure; as a result, CDC Sage was
classified as tolerant and CDC Golden as sensitive genotype based on its higher
pollen germination and stable lipid composition in pollen than the heat-sensitive
genotype at 36 °C (Jiang et al. 2015).

Pollen-based traits were also used to screen 44 soybean genotypes for heat
tolerance at 38/30 °C (Salem et al. 2007). The total stress response index based on
reproductive traits such as pollen germination and pollen tube length was used to
categorize the genotypes. Three of these genotypes, heat tolerant (DG 5630RR), heat
intermediate (PI 471938), and heat sensitive (Stewart III), were selected for pollen
grain morphology; the heat-sensitive genotype had deformed pollen with reduced
aperture. Based on the studies mentioned above, pollen grain structure and function
could be used as a screening tool for heat tolerance in soybean (Salem et al. 2007).
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2.6 Leaf-Based Parameters

2.6.1 Stomatal Conductance

Stomatal conductance is a measure of stomatal opening or the rate of passage of CO2

entering and water vapor releasing through leaf stomata. Stomatal conductance is
affected by many environmental factors, including high temperature. Stomatal
conductance increases with increasing temperature to increase photosynthesis,
which can help plants endure short heat waves (Urban et al. 2017). Moreover, plants
acclimatize to high temperatures by evaporating more water, keeping their canopies
cool despite the presence of fewer stomata (Crawford et al. 2012). Therefore,
regulating stomatal conductance under high temperatures is a useful trait for screen-
ing contrasting genotypes. Stomatal conductance can be recorded with a leaf
porometer and expressed in mmol m-2 s-1 (Priya et al. 2018). Heat-tolerant chick-
pea genotypes (ICC15614, ICCV92944) had higher stomatal conductance
(265–271 mmol H2O m-2 s-1) than heat-sensitive genotypes (ICC5912,
ICC10685; 187–210 mmol H2O m-2 s-1) under high temperatures (>32/20 °C)
imposed by late sowing (Kaushal et al. 2013). Similarly, for late-sown mung bean
genotypes, the heat-tolerant genotype (SML 868) had higher stomatal conductance
(99 mmol m-2 s-1) than the heat-sensitive genotype (SML 668; 90 mmol m-2 s-1)
(Kaur et al. 2015). In another study, five common bean genotypes (SB761, SB776,
SB781, Jaguar, TB1) were screened in the greenhouse at three temperature regimes
(35/30 °C, 40/35 °C, 45/40 °C); stomatal conductance in all genotypes increased
with increasing temperature until 40/35 °C but declined at 45/40 °C except in
genotype TB1, which was identified as heat tolerant (Traub et al. 2018). Similarly,
Sita et al. (2017) identified heat-tolerant (IG2507, IG3263, IG3745, IG4258,
FLIP2009) and heat-sensitive (IG2821, IG2849, IG4242, IG3973, IG3964) lentil
genotypes based on stomatal conductance—the heat-tolerant genotypes had higher
stomatal conductance values (390–497 mmol m-2 s-1) than heat-sensitive genotype
(205–313 mmol m-2 s-1) in a late-sown environment.

2.6.2 Stay-Green Trait

Heat stress negatively affects photosynthesis by decreasing leaf pigment content and
damaging leaf ultrastructure in heat-sensitive genotypes. Chloroplasts play a vital
role in photosynthesis as one of the most heat-sensitive organelles (Abdelmageed
and Gruda 2009; Krause and Santarius 1975). Decreased total chlorophyll content
and changes in the chlorophyll a/b ratio have been correlated with reduced photo-
synthesis during heat stress due to reduced “antenna (pigment unit)” size that
reduces light harvesting (Blum 1986; Harding et al. 1990; Shanmugam et al.
2013). Chlorophyll retention (chlorophyll content) is an integrative trait and is
considered a good criterion for screening heat-stress tolerance in legume crops.
For example, high-temperature (38/28 °C) stress for 14 days at the flowering stage
in a growth chamber caused anatomical and structural changes, including damaged
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plasma membrane, chloroplast membrane, and thylakoid membranes and reduced
leaf photosynthetic rate, in the leaves of soybean genotype K 03-2897. Plant
chlorophyll maintenance, also known as the stay-green (SGR) trait, is affected by
high temperature. Understanding the physiological and molecular mechanisms of
the stay-green trait is important for controlling photosynthetic ability (Abdelrahman
et al. 2017). The SGR trait, or delayed leaf senescence (DLS), allows plants to retain
leaves in an active photosynthetic state under high temperatures to maintain assimi-
lation and increase crop yield (Gregersen et al. 2013; Kumari et al. 2013). Stay-green
genotypes can carry out photosynthesis for longer than senescent types, often with
yield benefits (Borrell et al. 2014). The development of contrasting F6 and F7
recombinant-inbred lines of cowpea for the DLS trait under heat stress revealed
that the DLS trait increased plant survival and seed size under heat stress (Ismail
et al. 2000). Of ten common bean genotypes, only BRS Expedito, FT-Taruma, and
BAF071 had the stay-green trait, with higher initial chlorophyll a contents, less
chlorophyll degradation, and higher grain yields under heat stress than the other
genotypes (Schmit et al. 2019).

A field experiment screening 58 chickpea genotypes for high-temperature toler-
ance (25–40 °C) during the reproductive phase identified eight genotypes—Pusa
1103, Pusa 1003, KWR 108, BGM 408, BG 240, PG 95333, JG 14, and BG 1077—
as heat tolerant, with higher chlorophyll contents than the heat-sensitive genotypes
(ICC1882, PUSA 332, PUSA 112, RSG 803) (Kumar et al. 2017). Two heat-tolerant
chickpea genotypes (ICC1356, ICC15614) maintained higher chlorophyll contents
under heat stress (>32 °C/20 °C) in the field than two heat-sensitive genotypes
(ICC4567, ICC5912) (Awasthi et al. 2017). In another study, chickpea genotypes
were grown in the greenhouse to flowering (42 and 46 DAS) and then in a growth
chamber under increasing temperatures (by 2 °C per day from 27/18 °C to 42/25 °C;
day/night) for 8 days (anthesis), which revealed that genotype JG14 (heat tolerant)
had higher total leaf chlorophyll content than genotype ICC16374 (heat sensitive)
(Parankusam et al. 2017). Similarly, heat-tolerant chickpea genotypes Pusa-1103
and BGD-72 had significantly higher chlorophyll contents than heat-sensitive
genotypes Pusa-256 and RSG-991 under high temperatures (25/35 °C) in wooden
polyethylene chambers (Singh et al. 2018). Likewise, Kaushal et al. (2013) identified
two heat-tolerant (ICC15614, ICCV92944) and two heat-sensitive (ICC10685,
ICC5912) chickpea genotypes based on the chlorophyll content, after exposure to
heat stress (>32/20 °C) in the field during reproductive development. A field study
on lentils measured the stay-green trait as the loss of total chlorophyll (Chl) in leaves
under high temperature (>32/20 °C) during the reproductive phase; heat-stressed
plants had lower total chlorophyll concentrations than the control plants, and the
heat-tolerant genotype (IG3263) retained more Chl than the heat-sensitive genotype
(IG4242) (Sita et al. 2017). Similarly, lentil genotypes LL699 and LL931 (heat
tolerant) retained more chlorophyll than genotype LL1122 (heat sensitive) in out-
door conditions (>32/23 °C), which was confirmed in a controlled environment with
plants subjected to 33/15 °C or 35/20 °C during reproductive growth (Bhandari et al.
2016). Heat stress in the field (>30/20 °C) during reproductive growth and seed
filling revealed two lentil heat-tolerant genotypes (1G 2507 and 1G 4258) with high
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leaf chlorophyll concentrations and two heat-sensitive genotypes (1G 3973 and 1G
3964) with lower chlorophyll concentrations (Sehgal et al. 2017). In another study,
common bean genotypes exposed to 32/25 °C at the V4 developmental stage
identified two genotypes (Sacramento and NY-105) with high chlorophyll contents,
indicating their high thermotolerance, relative to the thermosensitive genotype
Redhawk with low chlorophyll content (Soltani et al. 2019). Likewise, in a heat-
sensitive mung bean genotype (SML668), chlorophyll content declined, relative to
the heat-tolerant genotype (SML832), grown under heat stress (43/30 °C and 45/32 °
C) in outdoor late-sown conditions, contributing to an increase in leaf temperature
(Kaur et al. 2015). Mung bean genotypes EC693357, EC693358, EC693369,
Harsha, and ML 1299 produced more chlorophyll content under heat stress than
genotypes EC693363, EC693361, KPS1, EC693370, and IPM02-3 (Sharma et al.
2016). Screening of ten faba bean genotypes for heat-stress tolerance (37 °C)
revealed that genotype C5 tolerated high temperature by retaining more chlorophyll,
while genotype Espan had less chlorophyll and was relatively more sensitive to heat
stress (Siddiqui et al. 2015). In a recent study, 4-week-old seedlings of 15 alfalfa
cultivars were exposed to heat treatment (38/35 °C) for 7 days in a growth incubator;
genotypes Gibraltar, WL354HQ, Golden Queen, Siriver, WL712, and Sanditi had
significantly lower Chl contents (heat sensitive) than genotypes Bara310SC,
WL363HQ, WL656HQ, and Magna995 (heat tolerant) (Wassie et al. 2019).

2.6.3 Chlorophyll Fluorescence

Chlorophyll (Chl) fluorescence (Fv/Fm ratio) is used as an indicator of functional
changes in photosynthetic apparatus under abiotic or biotic stress (Yamada et al.
1996). The relationships between essential photosynthetic responses and chlorophyll
fluorescence are pivotal as they provide information on the plant’s photosynthetic
ability and acclimation limit under stress conditions (Kalaji et al. 2018; Lichtenthaler
1987). Chlorophyll fluorescence is a fast, nondestructive, and effective common tool
for determining heat-stress responses as it can reveal damage before visible stress
symptoms appear (Baker 2008; Méthy et al. 1994; Wilson and Greaves 1990). Of the
photosynthetic apparatus, photosystem II (PSII) is the most heat-labile cell structure
(Vacha et al. 2007). Since damage to PSII is often the first response of plants
subjected to thermal stress (Mathur et al. 2011), measuring chlorophyll
a fluorescence is an effective and noninvasive technique for identifying damage to
PSII efficiency (Baker 2008; Baker and Rosenqvist 2004). The ratio between
variable fluorescence (Fv) and maximum fluorescence (Fm), or Fv/Fm, reflects the
maximum quantum efficiency of PSII (Butler 1978). When plants are exposed to
abiotic stress, including thermal stress, Fv/Fm often declines (Molina-Bravo et al.
2011; Sharma et al. 2012; Willits and Peet 2001). Screening methodologies have
used chlorophyll fluorescence to detect and quantify damage in PSII and thylakoid
membranes in several legume crops under heat stress, including chickpea, ground-
nut, pigeon pea, and soybean (Herzog and Chai-Arree 2012; Srinivasan et al. 1996).
Recent study assessed the response of four chickpea genotypes to a natural
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temperature gradient during the reproductive stage in the field and a climate chamber
using chlorophyll fluorescence. Field experiments were conducted over two winter
seasons; two genotypes (Acc#RR-3, Acc#7) showed tolerance (Fv/Fm 0.83–0.85)
and two (Acc#2, Acc#8) showed sensitivity (Fv/Fm 0.78–0.80) to heat stress. The
field results were validated in the climate chamber experiment, where Fv/Fm

declined more in the heat-sensitive (0.74–0.75 at 35/30 °C) than heat-tolerant
(0.78–0.81 at 35/30 °C) genotypes when exposed to short-term heat treatments
(30/25 °C and 35/30 °C) (Makonya et al. 2019). In another chickpea study, heat
stress (>30 °C) in the field during the reproductive stage reduced Fv/Fm more in two
heat-sensitive genotypes ICC10685 and ICC5912 (0.48, 0.41) than in two heat-
tolerant genotypes ICC15614 and ICCV92944 (0.64, 0.60) (Awasthi et al. 2014;
Kaushal et al. 2013). A similar study, where four contrasting chickpea genotypes—
two heat tolerant (ICC1356, ICC15614) and two heat sensitive (ICC4567,
ICC5912)—were analyzed in the field, revealed that the tolerant genotypes
maintained higher chlorophyll fluorescence (Fv/Fm 0.60) on exposure to heat stress
(>32/20 °C) than the sensitive genotypes (Fv/Fm 0.50) (Awasthi et al. 2017). In
lentils, photosynthetic efficiency was measured as PSII function (Fv/Fm ratio) in the
field by exposing plants to heat stress (>32/20 °C) during the reproductive stage.
Heat-tolerant genotypes—IG2507, IG3263, IG3297, IG3312, IG3327, IG3546,
IG3330, IG3745, IG4258, and FLIP2009—maintained higher chlorophyll fluores-
cence (Fv/Fm 0.71) under stress than heat-sensitive genotypes IG2821, IG2849,
IG4242, IG3973, and IG3964 (Fv/Fm 0.58) (Sita et al. 2017). Similarly, two heat-
tolerant lentil genotypes (1G 2507 and 1G 4258) exposed to heat stress (>25 °C)
during reproductive growth and seed filling in the field had higher chlorophyll
fluorescence (Fv/Fm 0.67) than two heat-sensitive genotypes (1G 3973 and 1G
3964; Fv/Fm 0.57) (Sehgal et al. 2017). Likewise, the screening of 41 mung bean
lines grown outdoors and exposed to high temperatures (>40/28 °C) during the
reproductive stage revealed several promising heat-tolerant lines (EC693358,
EC693357, EC693369, Harsha, ML1299) with high Fv/Fm ratios (0.73–0.75) com-
pared to sensitive lines (0.61–0.67), which could serve as useful donor/s for breeding
programs and as a suitable base plant source to gain insight into heat stress-induced
effects in cell metabolism (Sharma et al. 2016). Nine common bean lines were
evaluated for changes in chlorophyll fluorescence under heat stress during flowering
(45 °C for 2 h) in a greenhouse; thermotolerant lines 83201007 and RRR46 had
higher Fv/Fm values under heat stress than the heat-sensitive line Secuntsa (Petkova
et al. 2009). In another study, 12 varieties and lines of common bean were exposed to
42 °C in the field during the reproductive period; two genotypes (Ranit and Nerine)
maintained their Fv/Fm values at 42 °C, relative to the controls at 26 °C, and were
considered heat tolerant. These two genotypes also showed good productivity and
quality and can be used as parental lines in bean breeding programs (Petkova et al.
2007). Screening of 15 alfalfa genotypes by exposing seedlings to 38/35 °C day/
night for 7 days in a growth chamber identified Bara310SC (Fv/Fm 0.79) andWL712
(Fv/Fm <0.79) as heat-tolerant and heat-sensitive cultivars, respectively (Wassie
et al. 2019), showing that Fv/Fm is an effective tool for phenotyping contrasting
genotypes for heat tolerance.
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2.6.4 Photosynthetic Rate

Heat stress affects the stay-green trait, chlorophyll content, and chlorophyll fluores-
cence, which affects RuBisCo activation, decreasing the photosynthetic rate
(Salvucci Michael and Crafts-Brandner 2004; Sharkey 2005). Hence, photosynthetic
rate can be used as a screening parameter for selecting heat-tolerant genotypes.
Variation in photosynthetic rate among plant species in response to heat stress has
been well documented. For example, the response of four chickpea genotypes to a
natural temperature gradient in the field at the flowering stage identified two heat-
tolerant genotypes (Acc#RR-3, Acc#7) with high Pn and two heat-sensitive
genotypes (Acc#2, Acc#8) with lower Pn; these results were validated in a climate
chamber experiment set at 30/25 °C and 35/30 °C (Makonya et al. 2019). In another
study, 56 chickpea genotypes were exposed to high temperatures in the field from
flowering to crop maturity (maximum temperatures 25–40 °C)—the tolerant
genotypes (PUSA1103, PUSA1003, KWR108, BGM408, BG240, PG95333,
JG14, BG) had higher Pn than the sensitive genotypes (ICC1882, PUSA372,
PUSA2024) (Kumar et al. 2017). In a similar study in lentil, two heat-tolerant
(1G 2507 and 1G 4258) genotypes had higher photosynthetic rate (Pn) than two
heat-sensitive (1G 3973 and 1G 3964) genotypes exposed to heat stress (>25 °C) in
the field during reproductive growth and seed filling (Sehgal et al. 2017).

Soybean cultivars IA3023 and KS4694 and PI lines PI393540 and PI588026A
expressed heat tolerance and susceptibility with high and low Pn, respectively
(Djanaguiraman et al. 2019). The two cultivars had less thylakoid membrane damage
than the PI lines. In an earlier study on soybean, genotype K 03-2897, exposed to
high temperature (38/28 °C) in a growth chamber for 14 days at the flowering stage,
significantly decreased Pn due to anatomical and structural changes (increased
thickness of palisade and spongy layers and lower epidermis) in cells and cell
organelles, particularly damage to chloroplasts and mitochondria (Djanaguiraman
and Prasad 2010).

2.6.5 Sucrose

Leaf photosynthates are transported to sink organs primarily as sucrose, and sucrose
synthase (SS) is a key enzyme for sucrose to enter various metabolic pathways
(Calderini et al. 2006). Downregulation of SS indirectly inhibits carbohydrate
production, eventually reducing yield and quality. Maintaining sucrose levels is
vital during stressed conditions, which depend on its synthesis and hydrolysis.
Heat-stressed plants had significantly lower activities of key enzymes—sucrose
phosphate synthase (SPS) and SS—involved in sucrose synthesis than
non-stressed plants. Sucrose availability to reproductive organs is crucial for sus-
taining their function (Kaushal et al. 2013). Heat-tolerant genotypes can stabilize the
photosynthetic process better than heat-sensitive genotypes. Heat stress disturbs
sucrose production in leaves and impairs its transportation to reproductive organs
(Kaushal et al. 2013; Li et al. 2012). Limitations in sucrose supply to reproductive
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organs, particularly under thermal stress, restrict flower development and function
and pod and seed filling, reducing crop yield (Kaushal et al. 2013; Li et al. 2012).
Measuring sucrose concentrations reveals the photosynthetic status of plants under
heat stress (Awasthi et al. 2014). Sucrose synthase is strongly associated with heat
tolerance in chickpea; heat-sensitive genotypes produced far less leaf sucrose than
heat-tolerant genotypes, which impaired its supply to developing reproductive
organs (flowers, pods, and seeds) in chickpea (Kaushal et al. 2013). Screening a
large core collection of chickpea genotypes for heat tolerance (32/20 °C) in field
condition identified two heat-tolerant (ICC15614, ICCV92944) and two heat-
sensitive (ICC10685, ICC5912) genotypes. The heat-sensitive genotypes had sig-
nificantly greater inhibition of RuBisCo (carbon-fixing enzyme), SPS, and SS than
the heat-tolerant genotypes and thus produced less sucrose than the tolerant
genotypes (Kaushal et al. 2013). Heat-sensitive (ICC16374) and heat-tolerant
(JG14) chickpea genotypes exposed to gradually increasing temperatures (2 °C per
day from 27/18 °C to 42/25 °C; day/night) for 8 days at anthesis in a growth chamber
revealed greater sucrose synthase expression in JG14 than ICC16374 (Parankusam
et al. 2017). Two tolerant chickpea genotypes (Acc#7 and Acc#RR-3) had higher
starch contents and were relatively unaffected by heat-stress exposure compared to
two heat-sensitive genotypes (Acc#2, Acc#8) at high temperature (35/30 °C) in a
control chamber (Makonya et al. 2019). Therefore, an increased abundance of
sucrose synthase in the tolerant genotype reasserted its potential role during heat-
stress tolerance; this may ensure successful fertilization due to sustained pollen
viability under heat stress, enhancing pod set and yield, as reported earlier for the
tolerant genotype (ICC15614) (Krishnamurthy et al. 2011).

In lentil, sucrose production is vital for leaf and anther function and has been
correlated with SPS activity in natural high-temperature environments (>32/20 °C).
Heat-tolerant lentil genotypes (IG2507, IG3263, IG3297, IG3312, IG3327, IG3546,
IG3330, IG3745, IG4258, FLIP2009) produced more sucrose in leaves (65–73%)
and anthers (35–78%) than heat-sensitive genotypes (IG2821, IG2849, IG4242,
IG3973, IG3964), which was associated with superior reproductive function and
nodulation in tolerant genotypes (Sita et al. 2017). Limitations in sucrose supply may
disrupt the development and function of reproductive organs (Prasad and
Djanaguiraman 2011; Snider et al. 2011). In a similar study, two heat-tolerant
(1G 2507 and 1G 4258) lentil genotypes exposed to heat stress (>25 °C) in the
field had higher SS activity and thus higher sucrose contents in leaves and seeds than
two heat-sensitive (1G 3973 and 1G 3964) genotypes (Sehgal et al. 2017). Thus,
sucrose synthase in seeds and leaves is strongly correlated with seed yield; therefore,
reductions in seed size and weight are attributed mainly to reductions in sucrose
content.

Mung bean genotypes tested under heat stress (>40/25 °C day/night) during
flowering and podding outdoors and in a controlled environment showed that two
heat-tolerant genotypes (SML832 and SML668) had more sucrose than the heat-
susceptible genotype (SML832). Thus, sucrose concentrations in leaves and anthers
and SS and SPS activities declined significantly in sensitive genotypes under heat
stress (Kaur et al. 2015). Exposure of common bean genotypes at the V4
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developmental stage to heat treatment (32/25 °C) in a growth chamber significantly
reduced leaf sucrose concentration in genotype Redhawk (most heat-sensitive geno-
type) and increased sugar contents in Sacramento (58%) and NY-105 (most heat
tolerant) (Soltani et al. 2019).

2.6.6 Cell Membrane Thermostability

Under heat stress, protein denaturation, lipid liquefaction, and loss of membrane
integrity are some of the chief physiological, biochemical, and molecular changes in
plant metabolism (Gulen and Eris 2004). Most of the changes that appear during
acclimation to heat stress are reversible, but death can occur if the stress is too
intense (Saelim and Zwiazek 2000). Cell membranes are the principal target of
environmental stresses, including heat stress (Chen et al. 2014; Sita et al. 2017).
Protein denaturation and increased membrane fluidity, enzyme inactivation,
decreased protein synthesis, protein degradation, and alterations in membrane integ-
rity are documented injuries under heat stress (Howarth 2005). By accelerating the
kinetic energy and movement of molecules across membranes, heat stress releases
chemical bonds within the molecules of biological membranes, resulting in mem-
brane fluidity by protein denaturation or increased unsaturated fatty acids
(Savchenko et al. 2002). Decreased cell membrane thermostability or increased
ionic leakage caused by the alteration of membrane protein structure is an important
indicator of heat stress. The increased membrane fluidity caused by protein denatur-
ation and increased unsaturated fatty acids in the membrane under high temperatures
affect membrane structure and function (Wahid et al. 2007), causing symptoms, such
as photooxidation of chlorophyll pigments, impaired electron flow, inhibited carbon
fixation, and water loss from leaves (Prasad et al. 2017; Sharifi et al. 2012; Sita et al.
2017). The relationship between cell membrane thermostability (CMT) and crop
yield changes from plant to plant under high temperatures. Ion leakage from plant
tissues has been used as a membrane damage indicator in plants exposed to heat
stress. Thus, CMT is an indirect indicator of heat-stress tolerance in legumes, such as
soybean (Martineau et al. 1979), lentil (Sita et al. 2017), chickpea (Kaushal et al.
2013), and mung bean (Sharma et al. 2016). Membrane damage occurs under heat
and cold stress, more so under heat stress, as reported forMedicago (Mo et al. 2011).
Cell membrane thermostability (CMT) tends to decline during the late developmen-
tal phase of plants (Ahmad and Prasad 2011).

In addition to conventional breeding techniques, noticeable variations in mem-
brane thermostability among genotypes, combined with biochemical and physiolog-
ical screening methods, could be used to improve the selection for breeding
objectives (Hemantaranjan et al. 2014). Membrane thermostability has been used
to assess thermotolerance in many food crops worldwide. Depending on the growing
season, electrolyte leakage in plants varies among tissues, organs, and growth stages
and is affected by plant/tissue age, sampling organ, developmental stage, growing
season, degree of hardening, and plant species. A significant positive relationship
between CMT and yield was reported in sorghum (Sullivan and Ross 1979). In crop
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plants such as barley (Hordeum vulgare L.), cotton (Gossypium spp.), sorghum, and
cowpea, increased electrolyte leakage decreased membrane thermostability (Wahid
et al. 2007; Wahid and Shabbir 2005). In leguminous crops, electrolyte leakage has
been used to assess thermotolerance. For example, heat stress at 34 °C in lentil
revealed genotypes Ranjan, Moitree, 14-4-1, IC201710, and IC208329 as heat
tolerant and genotypes ICC201655, ICC201661, ICC201662, ICC201670,
ICC201675, ICC201681, ICC201698, ICC201743, ICC201794, ICC248959,
Asha, Sagardeep Local, and UP local as heat sensitive, based on cell membrane
stability in field and growth chamber studies (Choudhury et al. 2012). In another
study, lentil genotypes exposed to high temperature (45 °C) at the flowering stage
revealed Qazvin and B4400 as heat-tolerant and -sensitive genotypes, with 98.13%
and 33.19% CMT, respectively (Barghi et al. 2013). At 38/28 °C and 40/30 °C in a
controlled environment, heat-tolerant lentil genotypes IG2507, IG3263, IG3745,
IG4258, and FLIP2009 had less membrane damage (<20% electrolyte leakage)
than heat-sensitive genotypes IG2821, IG2849, IG4242, IG3973, and IG3964
(>30%) (Sita et al. 2017).

Among various legumes (pigeon pea, peanut, chickpeas, and soybean), chickpea
was the most sensitive to high temperature based on CMT (Devasirvatham et al.
2012). Heat-tolerant chickpea genotypes ICCV07110 and ICCV92944 had less
membrane damage (22.6% and 20.6%) than heat-sensitive genotypes ICC14183
and ICC5912 (30.4% and 33.3%) under high temperatures of 40/30 °C and 45/35 °C
(Kumar et al. 2013). In another study, high temperature (>32/20 °C) during the
reproductive stage caused the most membrane damage in heat-sensitive chickpea
genotypes ICC10685 (28.3%) and ICC5912 (26.3%) and the least membrane dam-
age in heat-tolerant genotypes ICC15614 (17.3%) and ICCV 92944 (19.6%)
(Kaushal et al. 2013). A gradual rise in temperature (42/25 °C) at anthesis for
8 days increased electrolyte leakage (EL) by 20–25% greater in heat-sensitive
chickpea genotype ICC16374 compared to heat-tolerant genotype ICCV92944
(Parankusam et al. 2017). At 37/27 °C, electrolyte leakage increased by a maximum
of 16–25% in chickpea genotypes (Pareek et al. 2019), with ICC1205 identified as
heat tolerant (13–14%). Similarly, Dua et al. (2001) reported ICCV88, ICC512, and
ICC513 as heat-tolerant chickpea genotypes under heat stress. Another study on six
chickpea genotypes revealed DG36 (EL: 36.7%) and Pusa 372 (EL: 50.7%) as
heat-tolerant and heat-sensitive genotypes, respectively, when exposed to high
temperature (>38 °C) under field conditions, based on EL (Singh et al. 2004). Of
115 chickpea genotypes screened at high temperature (36.5 °C) in the field, GNG
663 and Pusa 244 were selected as heat tolerant and heat sensitive, with electrolyte
leakage values of 23% and 50%, respectively (Kumar et al. 2012). Among 30 chick-
pea genotypes screened for heat tolerance (>30 °C), Pusa 240 and GG2 genotypes
were identified as heat-tolerant and -sensitive genotypes, respectively, with mini-
mum (45%) and maximum (69%) cell membrane injury (Kumar et al. 2013).

Screening of nine cowpea genotypes exposed to heat stress (33/20 °C) during
flowering and pod revealed less leaf electrolyte leakage in heat-tolerant genotypes
H36, H8-9, and DLS99 (35.8–36.7%) than heat-susceptible genotypes CB5, CB3,
and DLS127 (66.2–79.0%) (Ismail and Hall 1999). In another study at high
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temperature (38/30 °C), cell membrane injury was negatively corelated with yield in
heat-tolerant (CB 27, Prima, UCR 193) and heat-sensitive genotypes (CB 5, CB 46)
(Singh et al. 2010), with less membrane damage in heat-tolerant genotypes.

Screening of 15 Medicago cultivars at high temperature (38/35 °C) using mem-
brane damage revealed “Bara310SC” and “WL712” as heat-tolerant and heat-
sensitive genotypes with 24.07% and 53.2% electrolyte leakage, respectively
(Wassie et al. 2019). Similarly, screening studies on 116 green gram genotypes at
high temperature (45/25 °C) identified EC 3398889 and LGG460 as heat tolerant
and heat sensitive, with minimum and maximum cell membrane damage, respec-
tively (Basu et al. 2019). Gradual exposure to high temperature (35–50 °C) of
4-week-old three common bean genotype seedlings in a growth chamber revealed
“local genotype” and “Ferasetsiz” as heat-sensitive genotypes, while “Balkız” was a
relatively heat-sensitive genotype (Tokyol and Turhan 2019). Gross and Kigel
(1994) used electrolyte leakage as a criterion for assessing heat tolerance at
32/28 °C during the reproductive stage and reported PI 271998 and BBL 47 as
heat-tolerant and heat-sensitive genotypes in common bean, respectively. High-
temperature studies (>40/28 °C) at the reproductive stage in mung bean showed
high electrolyte leakage (21.8–23.6%) in heat-sensitive lines (EC 693363, EC
693361, EC 693370, KPS1, IPM02-3) compared to heat-tolerant lines
(16.8–20.4%; EC693357, EC693358, EC693369, Harsha, ML1299) (Sharma et al.
2016). Another study on mung bean at high temperature (>35 °C) identified
genotype MH 421 as heat tolerant and Basanti as heat sensitive, with low
(34.88%) and high (41.34%) electrolyte leakage, respectively (Jha et al. 2015).
Screening of ten faba bean genotypes exposed to heat stress (37 °C) 60 days after
sowing revealed C5 as heat tolerant and Espan as heat sensitive, based on low
(57.67%) and high (76%) membrane damage, respectively (Siddiqui et al. 2015).

2.6.7 Canopy Temperature Depression

Canopy temperature depression (CTD) is the plant canopy temperature deviation
from the ambient temperature (Balota et al. 2007). At the whole-crop level, leaf
temperature decreases below air temperature when water evaporates. CTD acts as an
indirect measure of transpiration (Reynolds et al. 2001) and plant water status (Araus
et al. 2003) and indicates the relative metabolic fitness of genotypes in a given
environment (Reynolds 1997). CTD is a key trait for assessing the response of
genotypes to low water usage, high temperature, and other stresses (Balota et al.
2007). At high temperatures, transpiration increases for some time, with plants using
more water during growth due to more open stomata and lower CTD. A positive
CTD value [i.e., difference between air temperature (Ta) and canopy temperature
(Tc)] occurs when the canopy is cooler than the air (CTD = Ta - Tc) (Balota et al.
2008).

Canopy temperature depression is heritable and can be measured on cloudless
days using an infrared thermometer (Reynolds et al. 1997). To maintain canopy
temperature at a metabolically comfortable range, plants transpire through open
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stomata. Plants close stomata during stress acclimation, increasing the canopy
temperature (Kashiwagi et al. 2008). Canopy temperature can be affected by
biological and environmental factors, such as soil water status, wind, evapotranspi-
ration, cloudiness, conduction systems, plant metabolism, air temperature, relative
humidity, and continuous radiations (Reynolds et al. 2001). Canopy temperature is
an indicator of plant water status or the equilibrium between root water uptake and
shoot transpiration (Berger et al. 2010). CTD can act as a desirable criterion for
selecting heat-tolerant genotypes based on phenotypic variation (Mason and Singh
2014). It can be used to determine yield potential and metabolic fitness of crop plants
under specific environmental conditions (Kumari et al. 2013). It acts as a mechanism
of heat escape and is strongly correlated with yield (Reynolds et al. 2001); affected
by many physiological factors, it is a strong trait for determining genotype fitness.

Epicuticular leaf wax QTL and CTD are strongly interlinked, with wax load
affecting plant canopy temperature (Awika et al. 2017). Stay-green genotypes have
high CTD values and thus low canopy temperature due to transpirational cooling
under heat stress (Fischer et al. 1998; Reynolds et al. 1994). In chickpea, CTD is
negatively correlated with water potential, osmotic pressure, relative leaf water
content, and seed yield (Sharma et al. 2015). Differences in canopy temperature
are not detectable in high-humidity environments because the effect of evaporative
leaf cooling is negligible (de Souza et al. 2012). CTD has been successfully used to
select for heat tolerance in various crop species, including legumes. For example,
heat-tolerant chickpea genotypes ICCVs 95311, 98902, 07109, and 92944 had
higher CTD values than sensitive genotypes ICCVs 07116, 07117, and 14592,
which had negative CTD values (Devasirvatham et al. 2015). Another study
screened 30 chickpea genotypes exposed to temperature >30 °C to reveal Pusa
240 as a heat-tolerant genotype due to its cooler canopy than other genotypes
(Kumar et al. 2013). Similarly, screening chickpea genotypes subjected to 36.5 °C
identified GNG 663 and Vaibhavaas as heat tolerant and heat sensitive, respectively,
with CTD values of 4.8 °C (maximum) and 1.8 °C (minimum) (Kumar et al. 2012).
In a screening study of 56 chickpea genotypes for heat tolerance (40 °C), CTD
values ranged from 5.0 to 7.5 °C; eight genotypes (Pusa 1103, Pusa 1003, KWR
108, BGM 408, BG 240, PG 95333, JG 14, BG 1077) were identified as heat
tolerant, with maximum CTD values compared to other genotypes (Kumar et al.
2017). In mung bean, seed yield positively correlated with CTD, while canopy
temperature negatively correlated with root traits, such as the number of lateral
branches and dry root weight (Raina et al. 2019). In another study, mung bean
genotype MH 421 (CTD 5.78 °C) was selected as heat tolerant compared to Basanti
(CTD 4.37 °C) when tested at high temperature (>35 °C) (Jha et al. 2015). In pea,
CTD is affected by canopy structure, and increased pod number and pod-to-node
ratio associated with CTD (Tafesse et al. 2019).
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2.7 Biochemical Traits

2.7.1 Oxidative Stress and Antioxidants

Heat stress is a major environmental factor affecting vital metabolic processes in
plants, hampering proper growth and development. Disturbances in these metabolic
processes lead to ROS generation, such as hydrogen peroxide, hydroxyl radicals,
and superoxides (Chakraborty and Pradhan 2011). ROS production damages cellular
activity by inactivating enzymes, denaturing proteins, and damaging membranes and
DNA. Plants shield such injuries by activating cascades of enzymatic activities, such
as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate
peroxidase (APX), and glutathione reductase (GR), and nonenzymatic activities,
such as glutathione (GSH) and ascorbic acid (ASC) (Suzuki et al. 2012). The
selection of contrasting genotypes based on the expression level of these
antioxidants is effective in leguminous plants (Kumar et al. 2013). For example,
chickpea genotypes raised under natural conditions until 50% flowering and then in
a growth chamber for heat treatment (30/20 °C, 35/25 °C, 40/30 °C, and 45/35 °C)
revealed that heat-tolerant genotypes (ICCV92944, ICCV07110) had lower H2O2

and MDA concentrations than sensitive genotypes (ICC5912, ICC14183). Tolerant
genotypes face fewer injuries due to greater expression of antioxidants, such as APX
and GR (Kumar et al. 2013). Similarly, 41 mung bean genotypes were screened, and
contrasting genotypes were selected based on oxidative stress damage and antioxi-
dant activity. Heat-tolerant genotypes (EC693357, EC693358, EC693369, Harsha,
ML1299) experienced less oxidative damage (1.52–2.0-fold increase in MDA;
1.59–1.96-fold increase in H2O2) than sensitive genotypes (2.2–2.4-fold increase
in MDA; 2.21–2.93-fold increase in H2O2) (Sharma et al. 2016). Moreover, heat-
tolerant genotypes increased APX activity (by 1.48–1.77-fold) more than sensitive
genotypes (1.27–1.37-fold). Likewise, of 38 lentil genotypes screened for heat
tolerance (>35/20 °C) during the reproductive phase, heat-tolerant genotypes
(IG2507, IG3263, IG3745, IG4258, FLIP2009) had less oxidative damage (MDA
and H2O2 contents increased) and higher SOD, CAT, APX, and GR activities than
heat-sensitive genotypes (IG2821, IG2849, IG4242, IG3973, IG3964) (Sita et al.
2017). In another study on lentil exposed to heat stress (30, 35, 40, 45, and 50 °C for
4 h) in plant growth chambers, SOD, CAT, and APOX activities initially increased
in four heat-tolerant lentil varieties (IPL 81, IPL 406, Asha, Subrata) at 35, 40, and
45 °C but decreased at 50 °C, and decreased in heat-sensitive genotypes (Sehore and
Lv) at all temperatures, except 30 °C (Chakraborty and Pradhan 2011). Further
accumulation of carotenoids and ascorbate followed a similar trend, indicating the
association of heat sensitivity with antioxidant expression.

2.7.2 Metabolites

Metabolite detection and quantification are an effective and powerful tool for
selecting genotypes in response to environmental stresses (Bueno and Lopes
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2020). Metabolites include low-molecular-weight compounds, including precursors
and intermediate metabolic pathways, which are an indispensable part of plant
metabolism, regulating vital biological processes and involved in stress tolerance
(Wahid et al. 2007). The primary metabolites upregulated during abiotic stress are
amino acids (proline), carbohydrates (sucrose, hexoses, polyhydric alcohols),
polyamines (spermidine, spermine, putrescine), and glycine betaine. Correspond-
ingly, secondary metabolites include terpenoids (saponins, tocopherols), phenolic
compounds (flavonoids, isoflavonoids, anthocyanins), and nitrogen-containing
metabolites (alkaloids and glucosinolates) (Rodziewicz et al. 2014). About one
million specific metabolites varying in chemical structures, polarity, and
physiochemical properties are present in the plant kingdom and can be analyzed
through metabolomics profiling and metabolic fingerprinting. Due to heat stress,
plants reshuffle their metabolites to sustain plant growth (Serrano et al. 2019).
Metabolite production is regulated by genes; thus, the activation of heat-shock
factors, mainly HSFA2 and HSFA3, increases metabolite content, such as galactinol
(Song et al. 2016). Knowledge on metabolite production is important for developing
metabolite markers to select heat-tolerant varieties.

Chebrolu et al. (2016) raised heat-tolerant (04025-1-1-4-1-1) and heat-sensitive
(DT97-4290) soybean genotypes in a growth chamber, which were maintained
under control conditions (28/22 °C) until flowering. Heat stress [moderate (36/24 °
C) and severe (42/26 °C)] was imposed from flowering to maturity, with metabolite
profiling undertaken on harvested seeds. The seeds of genotypes collected at 42/26 °
C were highly abnormal and small and had high nitrogen levels compared with the
sensitive genotype. Two hundred and seventy-five metabolites were traced and
compared for 36/24 °C and 28/22 °C; 83 metabolites (48 downregulated and
35 upregulated were differentially altered in tolerant than sensitive genotypes)
significantly differed between genotypes at 36/24 °C, compared to 61 metabolites
(-30 and +31 in tolerant than sensitive genotypes) at 28/22 °C. Most traced
compounds were antioxidants belonging to tocopherol, terpenoid, and flavonoid
precursors. The tolerant genotype had more gulono-1,4-lactones (precursor for
ascorbic acid) than the sensitive genotype, which was attributed to its higher
tolerance to heat stress and positively correlated with seed vigor, seed germination,
seed weight, and oil content.

Proline is a multifunctional amino acid involved in plant growth and development
that acts as a compatible osmolyte and ROS scavenger to regulate plant function in
stressed environments (Szepesi and Szőllősi 2018). Under stress, proline has diverse
roles, such as stabilizing membranes, proteins, subcellular structures, and energy
sources, thus maintaining cellular homeostasis. Therefore, an increase in compatible
solutes such as proline under stressful conditions is valuable for plants (Kaur and
Asthir 2015). Leaf proline concentrations were measured in four chickpea genotypes
varying in their sensitivity to high temperature (4.5 °C higher than the ambient
temperature for 15 days); heat-treated genotypes had significant higher proline
concentrations than the control, more so in Pusa 1103 and BGD-72 (tolerant
genotypes) than Pusa 256 and Pusa 261 (sensitive genotypes) (Arunkumar et al.
2012). Similarly, a high-temperature treatment (45 °C for 8 h) on 6-day-old common
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bean seedlings increased proline content compared to control plants (25 °C) (Babu
and Devaraj 2008).

2.7.3 Heat-Shock Proteins

Heat-shock proteins are specific proteins accumulated during rapid heat stress. Heat-
shock genes are upregulated for plant survival under heat stress and responsible for
encoding HSPs (Chang et al. 2007). A sudden change in temperature increases HSP
production (Wahid et al. 2007). In all organisms, HSP expression is a general
response to high temperature (Vierling 1991). HSP90, HSP70, and low-molecular-
weight proteins are three classes of proteins according to molecular weight. Under
stress conditions, HSPs perform chaperone-like functions in protein synthesis,
maturation, targeting, renaturation, and membrane stabilization (Reddy et al. 2010,
2016). HSPs also play a role in protein translation and translocation, perform
proteolysis and protein folding, and reactivate denatured proteins (Zhang et al.
2005). Under heat stress, the expression of HSPs protects the machinery of protein
biosynthesis (Miroshnichenko et al. 2005). Membrane lipid composition, membrane
integrity osmoprotectants, and HSPs play important roles in heat tolerance (Blum
2018). HSPs are located mainly in the cytoplasm, nucleus, mitochondria, chloro-
plast, and endoplasmic reticulum (Waters et al. 1996). In plant species such as
potato, maize, soybean, and barley, specific HSPs have been identified in
mitochondria in response to high temperature (Neumann et al. 1994). HSPs maintain
membrane stability and protect PSII from oxidative stress (Barua et al. 2003). In
Medicago truncatula, the role of HSPs was determined by cloning and characteriza-
tion (Li et al. 2016). The roots of some plants also synthesize HSPs to cope with heat
stress (Nieto-Sotelo et al. 2002). The expression profiles of HSPs have been com-
pared in plant species/genotypes contrasting in heat sensitivity. In a comparative
study on cowpea and eight common bean varieties at 40 °C, cowpea showed more
HSP expression than common bean and was thus more tolerant to high temperature.
IPA 7 had the highest HSP expression of the eight common bean genotypes (Simões-
Araújo et al. 2003).

In chickpea exposed to high temperature (42/25 °C) at anthesis, the levels of
HSPs increased in genotype JG14 compared to ICC16374 (Parankusam et al. 2017).
In another study, five chickpea genotypes were assessed for thermotolerance at
30, 35, and 40 °C, with CSJD 884 and RSG 895 identified as heat tolerant and C
235 as heat sensitive (Kumari et al. 2018). In peanut genotypes exposed to 50 °C for
30 min, ICGS 76, COC038, COC050, COC041, and COC068 were identified as heat
tolerant and COC812, COC166, COC115, COC277, COC227, Tamrun OL 02, and
Spanco as heat sensitive (Selvaraj et al. 2011). Heat-tolerant peanut genotype ICGS
44 had higher HSP expression than heat-sensitive genotypes AK 159 and DRG
1 under heat stress (45 °C) (Chakraborty et al. 2018). The level of thermotolerance
positively correlated with HSP accumulation. Thirty varieties of pea seedlings
exposed to high temperature (46–49 °C) in growth chambers for different time
intervals (1–3 h) identified Acc#623 and Acc#476 as heat-tolerant and heat-sensitive
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varieties, respectively, with Acc#623 having higher levels of HSP70, HSP90, and
HSP104 than Acc#476 (Srikanthbabu et al. 2002). In soybean under 38/30 °C,
cultivar PI 471938 had higher HSP expression (especially HSP70), conferring heat
tolerance, than R95-1705 (Katam et al. 2020).

2.8 Genes for Heat Tolerance

Diverse genes have been identified using omics analyses (transcriptomics, genomics,
and proteomics) in various plant species for heat resilience mechanisms; these genes
are essential for developing stable cultivars (Singh et al. 2019). A lentil population
was developed by crossing heat-tolerant (PDL-1 and PDL-2) and heat-sensitive
(JL-3 and E-153) genotypes for molecular mapping and genetics studies (Singh
et al. 2017). For this purpose, simple sequence repeat (SSR) marker analysis and
QTL analysis were performed, using 495 SSR markers, which detected seven SSR
markers and two QTLs—qHt_ss and qHt_ps were closely linked with SSR markers
(PBA_LC_1507, PLC_105, PBA_LC_1288, LC_03, PBA_LC_1684,
PBA_LC_1752, PBA_LC_1480). Further, SSR marker PBA_LC_1507 was closely
linked to pod set and seedling survival trait. Another lentil study revealed genetic
diversity for heat tolerance among 119 genotypes using SSR markers (Zhang et al.
2005). High-temperature stress was applied at the seedling (35/33 °C) and anthesis
(35/20 °C) stages to study the effects on morphophysiological and reproductive traits
of non-stressed and stressed plants in the field. A set of 209 alleles were identified
using 35 SSR markers. Genotypes were clustered into nine groups based on SSR
markers. Clusters 1 and 6 had significant variation, which could help produce better
segregants for heat tolerance. The genotypes in clusters 2, 3, 4, 5, 7, 8, and 9 were
moderately tolerant or moderately sensitive to heat stress. Significant differences
among clusters were observed for seedling survivability, heat tolerance scores,
membrane stability index, pollen viability, pollen germination, pod and seed set,
and seed yield. The finding suggests that identifying the genetic distances between
clusters will maximize their use for breeding heat-tolerant lentils. Results from the
RT-PCR confirmed differential gene expression in heat-sensitive fescue genotype
PI283316 and heat-tolerant genotype PI297901 (Zhang et al. 2005).

Similarly, in chickpea, phenotyping of RILs developed from a cross between
ICC4567 (heat-sensitive) and ICC156614 (heat-tolerant) genotypes exhibited two
genomic regions (CaLG05 and CaLG06) with four QTLs for the number of filled
pods, seed number, grain yield, and pod set. Further, 25 genes responsible for heat
tolerance were reported in these two genomic regions—five encoding HSPs and
heat-shock transcription factors, three responsible for detoxifying ROS, five
encoding proteins like farnesylated protein 6 and ethylene-responsive transcription
factors, and all these genes collectively upregulating other genes like MYB4, AKH3,
and RAN1 that are involved in the mitigation of heat stress in chickpea (Paul et al.
2018). Molecular characterization in mung bean genotype VC1973A revealed
24 VrHsf genes responsible for the synthesis of heat-shock transcription factors
that mediate plant responses under heat stress, suggesting their potential role in
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investigating mechanisms related to heat tolerance (Liu et al. 2019). Similarly, in a
soybean study, 26 GmHsf genes coded for heat-shock transcription factors, with
GmHsf12,GmHsf28,GmHsf34,GmHsf35, and GmHsf47, highly upregulated during
heat stress (Chung et al. 2013).

2.9 Scope of Harnessing Germplasm for Designing Heat
Tolerance

Harnessing crop germplasm variability is one of the cheapest and most environmen-
tally friendly approaches for developing abiotic stress, including heat stress tolerance
(Jha et al. 2014). Like other crops, substantial genetic variation has been harnessed to
develop grain legumes that tolerate heat stress (Craufurd et al. 2003; Jha et al. 2017;
Krishnamurthy et al. 2011). Several breeder-friendly techniques, such as field-based
screening of grain legumes in targeted heat-stress environments, enabled the selec-
tion of potential heat-tolerant grain legumes in chickpea, soybean, common bean,
pea, lentil, and cowpea. Based on the early phenology, an important heat stress,
some important chickpea genotypes, viz., ICC 14346, ACC 316, and ACC
317, showing heat stress escape mechanisms have been reported (Canci and Toker
2009; Upadhyaya et al. 2011). Selection relying on yield and yield-related traits,
such as high pod and seed set, low grain yield reduction, and maintaining high
biomass, has been used to directly identify heat-tolerant lines, including ICC1205,
ICC15614, BG256, and Vaibhav in chickpea (Devasirvatham et al. 2013; Gaur et al.
2012; Jha et al. 2015; Jumrani et al. 2018); G122, PI 163120, PI 271998, G122, A55,
and Cornell 503 in common bean (Miklas et al. 2000; Rainey and Griffiths 2005;
Shonnard and Gepts 1994); TN88-63, Tvu 4552, and Prima in cowpea (Nielsen and
Hall 1985; Warrag and Hall 1983); 55-437, 796, 796, 55-437, ICG 1236, ICGV
86021, ICGV 87281, and ICGV 92121 in groundnut (Craufurd et al. 2003; Ntare
et al. 2001); 72578, 70548, 71457, and 73838 in lentil (Delahunty et al. 2015);
Dieng, IA3023, and KS4694 in soybean (Djanaguiraman et al. 2019; Puteh et al.
2013); C.52/1/1/1 and C.42 in faba bean (Abdelmula and Abuanja 2007); and
JP-625, IARI-2877, PMR-38 II, EC-318760, EC-328758, and IARI-2904 in pea
(Mohapatra et al. 2020). Similar studies based on various physiological parameters,
including cell membrane stability, identified heat-tolerant ILC 482, Annegiri, and
ICCV 10 in chickpea (Srinivasan et al. 1996), PI 271998 in common bean (Marsh
et al. 1985), and SPT 06-07 in groundnut (Singh et al. 2016), and studies based on
pollen germination and fertilization under heat stress identified heat-tolerant ICC
15614, ICCV 92944, and ICC1205 in chickpea (Devasirvatham et al. 2010; Kaushal
et al. 2013), 55-437, ICG 1236, TMV 2, and ICGS 11 in groundnut (Kakani et al.
2002), DG 5630RR, NRC 7, and EC 538828 in soybean (Jumrani et al. 2018; Salem
et al. 2007), and Haibushi in common bean (Tsukaguchi et al. 2003). In addition,
studies based on superior yield performance and genotype × genotype × environment
biplot analysis identified heat-tolerant ICC 4958, RVG 203, RVG 202, JAKI 9218,
and JG 130 in chickpea (Jha et al. 2018, 2019), and studies based on several heat-
stress tolerance indices identified heat-tolerant lines in soybean (Sapra and Anaele
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1991), chickpea (Jha et al. 2018), and common bean (Porch 2006). Harnessing
existing genetic variability in crop wild relatives and landraces should be considered
to broaden the genetic base of grain legumes for higher heat tolerance in the future.

2.10 Genetics of Heat Tolerance

Classical genetics and quantitative genetics approaches, such as generation mean
analysis and diallel analysis, provided preliminary information on heat-stress toler-
ance in chickpea (Jha et al. 2019), cowpea (Marfo and Hall 1992; Patel and Hall
1988), and common bean (Miklas et al. 2000; Rainey and Griffiths 2005) based on
yield and yield-related traits under heat stress. However, this genetic information
does not provide a complete picture of heat tolerance in these grain legumes, as this
trait is governed by multigenes and highly influenced by G × E interactions
(Upadhyaya et al. 2011).

2.11 Genomic Resources for Heat Tolerance

Unprecedented advances in genomic resource development have enabled the precise
mapping of various traits of breeding importance, including heat-stress tolerance in
various grain legume crops (Jha et al. 2021; Paul et al. 2018; Pottorff et al. 2014;
Varshney et al. 2019). In parallel, the availability of reference genome sequences for
major grain legumes has enriched the genomics resources in legume crops. Using a
biparental mapping approach, several QTLs controlling heat-stress tolerance have
been elucidated in chickpea (Jha et al. 2019; Paul et al. 2018), cowpea (Lucas et al.
2013; Pottorff et al. 2014), lentil (Singh et al. 2017), and pea (Huang et al. 2017). In
chickpea, four important QTLs related to yield traits were identified on CaLG05 and
CaLG06 from an ICC15614 × ICC4567 RIL population under heat stress (Paul et al.
2018). Jha et al. (2021) reported that 37 major QTLs related to heat tolerance in
chickpea were discovered. Five QTLs were elucidated in cowpea under heat stress
(Lucas et al. 2013). Similarly, an evaluation of IT93K-503-1 × CB46 and IT84S-
2246 × TVu14676 RIL populations identified three QTLs (Hbs-1,Hbs-2, andHbs-3)
contributing to heat tolerance in cowpea (Pottorff et al. 2014). Many QTLs contrib-
ute to phenological traits, such as days to flowering, with yield-related QTLs
reported in pea under heat stress (Huang et al. 2017).

The availability of high-throughput SNP markers elucidated genomic regions
controlling heat tolerance across the whole genome in a large set of chickpea
germplasm using a genome-wide association mapping approach (Tafesse et al.
2020; Varshney et al. 2019). In this context, several marker-trait associations
(MTAs) for various heat-stress traits have been deciphered in chickpea (Thudi
et al. 2014; Varshney et al. 2019), pea (Tafesse et al. 2020), and common bean
(López-Hernández and Cortés 2019). In whole genome resequencing derived SNP
markers based GWAS analysis involving a large panel of chickpea germplasm,
several significant MTAs for various physiological and yield traits were unveiled
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under heat stress (Varshney et al., 2019). Likewise, Tafesse et al. (2020) identified
several significant MTAs for chlorophyll content, photochemical reflectance index,
canopy temperature, and pod number in pea under heat stress. In common bean,
GWAS in 78 “geo-referenced” wild common bean accessions revealed several
candidate genes (e.g., MED23, MED25, HSFB1, HSP40, HSP20, phospholipase
C,MBD9, PAP) related to heat-stress tolerance (López-Hernández and Cortés 2019).
These MTAs could be important in marker-assisted breeding for developing heat-
tolerant grain legumes.

2.12 Transcriptomics for Unfolding Candidate Genes for Heat
Tolerance

In the past decade, technical interventions in functional genomics, especially next-
generation sequencing-based RNA-seq facility, have offered great insights into
gaining function of candidate gene(s) controlling various complex traits, including
heat stress in various grain legumes (Agarwal et al. 2016; Singh et al. 2019; Wang
et al. 2018). Using the RNA-seq technique, Ca_25811, Ca_23016, Ca_09743,
Ca_17680, and Ca_25602 candidate genes were deciphered from heat-treated
reproductive tissues of heat-tolerant and heat-sensitive chickpea genotypes (Agarwal
et al. 2016). In soybean, RNA-seq analysis of contrasting genotypes treated with
combined drought and heat stress revealed several differentially expressed genes,
primarily involved in the defense response, photosynthesis, and metabolic processes
(Wang et al. 2018). RNA-seq analysis of heat-treated soybean leaf tissue at the
reproductive stage revealed a plethora of up- and down-regulatory differentially
expressed genes and unearthed genes involved in flowering, oxidative stress, osmo-
regulation, HSPs, and ethylene biosynthesis (Xu et al. 2020). Transcriptional analy-
sis of heat-treated soybean root tissue revealed numerous differentially expressed
genes involved in regulating the heat-stress response (Valdés-López et al. 2016). In
lentil, transcriptome analysis of contrasting heat-tolerant and heat-sensitive
genotypes (PDL-2 and JL-3) revealed several genes encoding a WRKY transcription
factor, DnaJ homolog subfamily B member 13, and 17.1 kDa class II heat-shock
protein and cell wall (Singh et al. 2019). However, higher expression of NAC and
WRKY transcription factor genes conferred heat tolerance in the PDL-2 genotype.

2.13 Proteomics and Metabolomics Resolving Gene Networks
for Heat Tolerance in Grain Legumes

A proteomics approach could endow us with the whole landscape of proteins
responding to various biotic and abiotic stresses (Ramalingam et al. 2015). A series
of proteins contributing to switching on various complex signal transduction
mechanisms and intricate gene networks associated with adapting the plant response
to heat stress have been investigated (Rathi et al. 2016). However, the role of
proteomics in mediating heat-stress tolerance remains limited in grain legumes.
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Various types of HSPs, such as ClpB/HSP100 and VfHsp17.9-CII (Kumar et al.
2015), EF-Tu protein (Das et al. 2016), tissue-specific proteins (Ahsan et al. 2010),
and early response to dehydration (ERD)-related proteins (ERD10 and ERD14)
(Kovacs et al. 2008), act as chaperones, protecting cells from heat stress-related
injuries. Similarly, heat stress increased HSP expression in chickpea genotype JG14
(Parankusam et al. 2017) and groundnut genotype ICGS 44 (Chakraborty et al.
2018). Further, Das et al. (2016) reported 25 proteins contributing to various cellular
metabolic activities under heat stress in soybean. Furthermore, the participatory role
of dehydrin-like proteins recovered from mitochondria and their plausible role in
safeguarding mitochondrial membrane in yellow lupin under heat stress are worth
noting (Rurek 2010). Valdés-López et al. (2016) reported 30 commonly up- and
downregulated heat stress-responsive proteins involved in cell wall formation,
amino acid and lipid biosynthesis, and ROS reduction in soybean.

Like proteomics, metabolomics is a robust approach for enriching our under-
standing of various primary and secondary metabolites produced in response to
abiotic stresses, including heat stress (Janni et al. 2020; Ramalingam et al. 2015).
Among the various metabolites, tocopherol and its isoforms, ascorbate, flavonoids,
phenolic compounds, proline, polyamines, and glycine betaine help plants adjust to
heat stress (Chebrolu et al. 2016; Kaplan et al. 2004). For example, a heat-tolerant
soybean genotype had a higher abundance of flavonoids and tocopherols acting as
antioxidants than a heat-sensitive genotype (Chebrolu et al. 2016). Further technical
innovations and bioinformatic analysis of metabolomics-derived data could shed
light on the complex gene network of heat-stress adaptation in grain legumes.

2.14 Conclusions

Increasing episodes of heat stress are becoming a serious issue worldwide, challeng-
ing the yield potential of various crops, including grain legumes. Harnessing genetic
resources could be an important approach for sustaining legumes under rising
temperatures. In addition to yield traits, incorporating various physiological traits
could enable plants to adapt and sustain grain yield under heat stress (Reynolds and
Langridge 2016).

As crop wild relatives are the reservoir of novel gene(s)/QTLs for various stress
tolerance including heat-stress tolerance, introgression of heat-tolerance genomic
region into elite legume cultivars using a pre-breeding approach could sustain
legume yields under rising global temperatures (Chaudhary et al. 2020). Likewise,
capitalizing on the various adaptive traits conferring heat tolerance from legume
landraces could assist in developing grain legumes that tolerate heat stress. Further-
more, advances in grain legume genomics, especially molecular markers, and
availability of grain legume genome assemblies have helped pinpoint heat-tolerance
genomic regions in various legumes. Whole-genome resequencing efforts have also
enabled the discovery of novel haplotypes controlling heat tolerance (Varshney et al.
2019). In parallel, progress in functional genomics, including RNA-seq-based
transcriptomics, has enabled the discovery of underlying candidate gene
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(s) involved in heat tolerance and putative functions (Agarwal et al. 2016; Singh
et al. 2019; Wang et al. 2018). Additionally, advances in proteomics and
metabolomics have uncovered various participatory proteins, especially HSPs and
heat stress-responsive metabolites, and various novel signaling molecules in
legumes (Chebrolu et al. 2016; Parankusam et al. 2017). Therefore, leveraging
various breeding, physiological, and “omics” approaches combined with emerging
“speed breeding,” genomic selection, and genome editing technology could help
develop climate-resilient grain legumes to meet the increasing demand for plant-
based dietary protein.
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